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ABSTRACT
While advertising has become commonplace in today’s online in-
teractions, there is a notable dearth of research investigating the
extent to which browser fingerprinting is harnessed for user track-
ing and targeted advertising. Prior studies only measured whether
fingerprinting-related scripts are being run on the websites but that
in itself does not necessarily mean that fingerprinting is being used
for the privacy-invasive purpose of online tracking because finger-
printing might be deployed for the defensive purposes of bot/fraud
detection and user authentication. It is imperative to address the
mounting concerns regarding the utilization of browser fingerprinting
in the realm of online advertising.

To understand the privacy-invasive use of fingerprinting for
user tracking, this paper introduces a new framework “FPTrace”
(fingerprinting-based tracking assessment and comprehensive evalu-
ation framework) designed to identify alterations in advertisements
resulting from adjustments in browser fingerprinting settings. Our
approach involves emulating genuine user interactions, capturing
advertiser bid data, and closely monitoring HTTP information. Using
FPTrace, we conduct a large scale measurement study to identify
whether browser fingerprinting is being used for the purpose of user
tracking and ad targeting. The results we have obtained provide robust
evidence supporting the utilization of browser fingerprinting for the
purposes of advertisement tracking and targeting. This is substanti-
ated by significant disparities in bid values and a reduction in HTTP
records subsequent to changes in fingerprinting. We additionally
demonstrate the potential use of fingerprinting for privacy-evading
online tracking purposes even when users opt out of tracking under
GDPR/CCPA regulations. In conclusion, our research unveils the

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
WWW ’25, April 28-May 2, 2025, Sydney, NSW, Australia
© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-1274-6/25/04. . . $15.00
https://doi.org/10.1145/3696410.3714548

widespread employment of browser fingerprinting in online adver-
tising, prompting critical considerations regarding user privacy and
data security within the digital advertising landscape.
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1 INTRODUCTION
Browser fingerprinting is a technique employed to surreptitiously
collect data regarding a user’s web browser settings during their
online activities. The collected data is then utilized to construct a
unique digital identity, commonly referred to as a ‘fingerprint,’ for
that specific user browser. Each time a user visits a website, there is
potential for the site to employ browser fingerprinting as a means
to identify or track the user. Many earlier research studies, such
as Englehardt et al. [25] and Lerner et al. [32] and reports such
as [1], assumed that the adoption of a fingerprinting script itself
is an indication of web tracking and a violation of web privacy.
However, this assumption does not hold — just like cookies, browser
fingerprinting can be used for defensive security purposes, like
bot/fraud detection or authentication. For example, Wu et al. [46]
show that adversarial fingerprints are different from those of benign
users and therefore many real-world websites are using fingerprints
for bot/fraud detection. As another example, Lin et al. [33] have
demonstrated the real-world usage of browser fingerprinting in
authentication just like what Laperdrix et al. [29] have illustrated in
a feasibility study.

Therefore, the research question that we are answering in this
paper is: whether browser fingerprints are indeed adopted for online
tracking, thus violating web privacy. To the best of our knowledge,
none of the prior works have established the link between browser
fingerprinting and online tracking. On one hand, many works [25, 32],
as mentioned above, consider the existence of fingerprinting scripts
as a means of online tracking, which is not true. On the other hand,
people have studied the relationship between personalized adver-
tisements and web tracking in general, like cookie-based tracking.

https://doi.org/10.1145/3696410.3714548
https://doi.org/10.1145/3696410.3714548


For instance, Wills et al. [45] explored ad tracking on the Google
and Facebook advertising platforms. Similarly, Zeng et al. [48] em-
ployed header bidding to assess targeted ads. These studies did not
specifically address the methods employed to link tracking with
online advertising; therefore, it remains unclear whether browser
fingerprinting contributes to online tracking and privacy violation.

This paper seeks to bridge this gap in current research and reg-
ulatory assessment practices by investigating whether advertising
ecosystem indeed utilizes browser fingerprinting for user tracking
and targeting via a measurement study. Our key insight is that if
browser fingerprinting plays a role in online tracking, the change
of fingerprints will also affect the bidding of advertising and the
underlying HTTP records. Specifically, our approach involves leaking
user interest data through controlled A/B experiments, modifying
browser fingerprints, and leveraging advertiser bidding behavior and
HTTP events as a contextual indicator in the advertising ecosystem
to deduce changes in advertisements. Given that advertiser bidding
behavior and HTTP events are influenced by their prior knowledge
of the user, we anticipate notable changes in this information when
altering browser fingerprints.

Our Contributions: We offer the first study to measure whether
browser fingerprinting is being used for the privacy-invasive purposes
of user tracking, targeting and advertising. Our main contributions
can be summarized as follows:

(1) We introduce a framework, FPTrace, for detecting changes in
advertisements following alterations in browser fingerprinting.
FPTrace simulates real user interactions, captures advertiser
bids, records HTTP data, and removes or exports cookies to
observe such changes for the measurement of purposes of browser
fingerprints.

(2) Our findings provide evidence that browser fingerprinting is in-
deed utilized in advertisement tracking and targeting. The bid
value dataset exhibits notable differences in trends, mean values,
median values, and maximum values after changing browser
fingerprints. Moreover, the number of HTTP records, encom-
passing HTTP chains and syncing events, decreases significantly
after altering browser fingerprints. We also evaluate the role of
browser fingerprinting in cookie restoration. Our results confirm
that certain cookies contain browser fingerprinting information.
We documented 378 instances of cookie restoration related to
fingerprinting across 90 unique combinations of cookie keys and
host pairs across all settings. However, there is no conclusive
evidence to support browser fingerprinting’s direct involvement
in cookie restoration after we did the manual inspection.

(3) We further study the potential malicious use of fingerprinting
in the presence of data protection regulations such as GDPR
and CCPA when used with content management platforms. Even
under the GDPR and CCPA regulation protections, there are
significant variations in the number of HTTP chains and syncing
events observed in certain instances when browser fingerprints
are altered. Under GDPR, websites utilizing Onetrust, Quantcast,
and NAI might be involved in data sharing activities that use
browser fingerprinting to identify users. Under CCPA, Onetrust,
and NAI might be involved in data sharing activities that use
browser fingerprinting to identify users.

2 BACKGROUND
2.1 Browser Fingerprinting
Browser fingerprinting is a technique to identify users using data
collected from users’ browsers, which may be unique to each browser
(we refer to [30] for a representative survey in browser fingerprinting).

Yen et al. [47] and Nikiforakis et al. [40] assess the efficacy of
fingerprinting techniques. Vastel et al. [44] examine the discrepancies
present in browser fingerprints. Boda et al. [20] and Cao et al. [21]
investigate alternative aspects of browser fingerprinting. Previous
studies have explored various facets of browser fingerprinting, includ-
ing techniques involving canvas [37], JavaScript [38], and hardware
[39] methods. Information like User Agent which contains the users’
browser version and operating system version can be obtained by
the website via HTTP header. Screen resolution, canvas fingerprints,
users’ current time zone information can be accessed by the website
via JavaScript APIs. Such information can be gathered and used
to construct a user profile. Eckersley [24], Fifield et al. [26] and
Laperdrix et al. [31] have shown that the browser fingerprints can
be used for user identification due to their uniqueness. Acar et al.
[19] and Iqbal et al. [28] demonstrated that browser fingerprints can
be utilized in fraud detection. In real-world applications, services
like Datadome [4], Radware [5], and HUMAN [13] employ browser
fingerprinting for the purpose of fraud detection. Previous research
such as [42] and articles like [1] solely assessed the presence of
fingerprinting-related scripts on websites. However, this alone does
not indicate malicious intent for user tracking.

Website “COVER YOUR TRACK” can display each browser
fingerprint feature [3]. Website “AM I UNIQUE” can also show the
uniqueness of each browser fingerprint among all other users [10].
Website “FingerprintJS” generate a unique ID for each user by using
the browser fingerprints, and also display the ID to user [18].

2.2 Browser Fingerprint Spoofing
Spoofing browser fingerprints enables the concurrent operation of
multiple browser instances on a single device, each with distinct
browser fingerprinting. The Gummy Browser poses a significant
threat to the privacy and security of applications that rely on browser
fingerprinting [35]. This tool employs three distinct methods of
attack, script injection, script modification, and the exploitation of
the browser’s inherent settings and debugging tools.

Notably, the Gummy Browser exhibits the capability to success-
fully emulate all JavaScript-based browser fingerprinting techniques,
including the sophisticated canvas fingerprinting method. In the
context of script modification, the attacker wields the ability to
manipulate the behavior of the JavaScript API “toDataURL()” by
substituting it with either a predefined or randomized string. Con-
versely, in the case of script injection, the attacker can strategically
introduce a breakpoint within the script precisely at the juncture
where the JavaScript API “toDataURL()” is invoked, thereby en-
abling the replacement of its value with either a predetermined or
random string.

2.3 Cookie Restoration
Cookies play a crucial role in recognizing devices, such as computers,
within a network. Some cookies are designed to pinpoint individual
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users, enhancing their web browsing experience. When these cook-
ies are deleted or expire, cookie restoration becomes valuable for
reinstating them. Users have the option to safeguard their cookies for
potential restoration by employing extensions that export cookies to
JSON files or by manually copying cookie data from their browser
profiles in case of accidental deletion. On the other hand, websites
may endeavor to retain cookies within users’ browsers and restore
them even after users have deleted the cookies, thereby maintaining
user tracking capabilities.

2.4 Header Bidding
Header bidding [7] is a method employed by publishers on websites.
Here, publishers designate specific advertising spaces for poten-
tial advertisers. The advertiser securing the highest bid gains the
chance to display their ads in the corresponding slots. In client-side
header bidding, users have the convenience of directly accessing
and observing all the bids from their web browsers. Prebid.js [12]
is a notable implementation of header bidding. Through the API
pbjs.getBidResponses(), users on the client side can inspect the list
of advertisers who engaged in the bidding process to secure the
opportunity to display ads during the current user’s visit. In the
study outlined in [41], the author observes that profiles classified
as “Only category” command prices around 40% higher than those
assigned to “New user” profiles. The key finding underscores that
advertisers’ bidding behavior is shaped by their prior familiarity with
the user, resulting in elevated bid values compared to users for whom
advertisers lack previous knowledge. Liu et al. [34] additionally
demonstrated that advertisers with knowledge of users through data
syncing tend to submit higher bid values in header bidding.

2.5 Privacy Regulations
Recently, the European Union introduced the General Data Protection
Regulation (GDPR) [16], and California introduced the California
Consumer Privacy Act (CCPA) [17], both possessing the potential to
regulate and restrain the online advertising and tracking ecosystem.
GDPR requires that online services secure user consent (Articles 4
(11)) prior to processing user data (Article 6 (1) (a)). CCPA requires
online services to offer users the ability to opt-out of the sale of
their personal data (Section 1798 (a) (1)). Both require websites
to provide privacy notices containing information and controls for
opting in/out of the collection and processing of personal information,
which should include browser fingerprints. To comply with these
requirements, websites are required to integrate consent management
platforms (CMPs) [15]. CMPs scan websites, identifying all cookies
set by HTTP headers and scripts from first and third-party resources.
In the case of GDPR, CMPs must ensure that only necessary cookies
are shared, and consent is obtained before sharing non-essential
cookies. In the case of CCPA, CMPs should ensure that they provide
users with controls to opt-out of the sale of personal information.

3 FPTRACE: OUR FRAMEWORK TO ASSESS
FINGERPRINTING USE IN TRACKING

3.1 Framework Design
The objective of this research is to explore the utilization of finger-
printing in the realms of cookie restoration and targeted advertising.

To achieve this, it is imperative to design a robust framework tailored
for efficient data acquisition. Given the limitations of manual data
collection, our proposed framework “FPTrace” is engineered to
automate this process.

FPTrace is capable of emulating human user behavior by system-
atically visiting a curated list of websites categorized under specific
keywords, such as “Computer". During the visit, FPTrace not only
loads the website but also simulates the behavior of a real human
user by browsing the webpage. It is capable of clicking on various
links or advertisements, moving the mouse to specific areas on the
webpage, and even interacting with functions provided by third-party
services, such as Consent Management Platforms (CMPs) or stan-
dard cookie banners. After exploring the websites, FPTrace is able
to compile a browser profile, encompassing details like browsing
history and cookie data. This comprehensive profile is designated as
the “Interest Persona”, serving as a representation of user interests
and preferences. Furthermore, it has the capability to extract data
directly from advertisers, facilitating an in-depth analysis of targeted
advertising triggers. FPTrace is capable of capturing and recording
data such as bidding behaviors from various advertisers, as well
as personal data syncing events. This information is then securely
stored within the local database of FPTrace.

The design ensures versatility by allowing the FPTrace to se-
quentially or concurrently access multiple websites. Additionally,
FPTrace is equipped to export and compare cookies after a stipulated
number of website visits. To enhance its relevance in the domain of
fingerprinting, integrated features have been incorporated for browser
fingerprinting spoofing.

3.2 Framework Implementation
We present the tools we utilized in the FPTrace framework and the
functions we implemented to meet the varying requirements of our
experiments.

3.2.1 Web Crawling. We used OpenWPM [25] to construct our
crawling FPTrace. OpenWPM is a widely used tool to collect large
amount of data related to privacy. OpenWPM relied on the Selenium
[14] to handle browser Firefox to do automated crawling.

OpenWPM has default functionality for browsing a list of websites,
saving and loading browser profiles, and recording HTTP data.
However, our experiments require further parameters. We added
functionality to the OpenWPM to gather bid information.

For collecting bids, we used the Prebid.js, a popular implemen-
tation of the header bidding protocol [12], mostly because it takes
place on the client side, enabling us to intercept the bidding process
[2]. The bids objects we get from Prebid.js include all partipated
advertisers information, and the ads image HTML contents.

We have incorporated a feature that allows the removal of all
cookies from the browser profile. This function ensures that the
process of data training and collection is completed automatically,
free from any influence by human behaviors.

While gathering data through web crawling, we integrated func-
tionality to mimic typical human behaviors. FPTrace enables the
simulation of mouse movement from the top to the bottom of web
pages, accompanied by scrolling down, and introduces random wait-
ing periods ranging from 1 to 10 seconds. This feature enhances
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the realism of the crawler’s interaction with the website, resembling
genuine human browsing behavior.

3.2.2 Spoofing Browser Fingerprints. Our experiments require the
use of different browser fingerprints. We implemented an extension
to spoof JavaScript based browser fingerprints features.

By spoofing JavaScript APIs, we used real browser fingerprints
data from an dataset on Github [43]. The data is collected from real
devices. In spoofing JavaScript APIs, we used Script Injection code
provided by Gummy Browser [36] to overwrite all possible JavaScript
APIs that can be used in browser fingerprints, such as Navigator(API:
Navigator), Screen(API: Screen), Canvas(API: canvas.getContext)
and Date(API: Date) APIs. To ensure the spoofing of all APIs prior
to the loading of any webpage, we encapsulated all spoofing scripts
within a browser extension.

Only spoofing JavaScript APIs may not work if websites match
the value from JavaScripts to the one from HTTP header. So we
have also spoofed the HTTP header. ModHeader [9] is an extension
to allow users to modify HTTP headers. We embedded Selenium
ModHeader [8] version into OpenWPM to spoof HTTP header.

3.2.3 Capturing Bidding Object. Header bidding can signal the
enthusiasm of potential bidders. A bidder interested in showcasing
their advertisements in the present slot will typically place higher
bids. Cook et al. [23] have proved that the header bidding can be used
to identify if the user is tracked. A higher bid can represent the user
is tracked, and the user information is used by publishers, bidders, or
bidding auctions. Specifically, we use Prebid.js to monitor bidders’
behaviors. Prebid.js is an implementation of header bidding protocol,
and the user can get bidders’ behaviors, including the winner of each
ad slot, the ads image HTML contents, and also all of the participated
bidders bids value no matter the bidders win or lose.

OpenWPM does not have functions to record bidding behaviors,
so we inject codes to record those behaviors when the crawlers
browse the website with Prebid.js and displaying ads.

3.2.4 Exporting Cookies. Grasping the significance of browser
fingerprints in advertising also necessitates an examination of cookie
data. Fingerprints could become crucial if cookies that were deleted
get reinstated. OpenWPM currently lacks functionality for exporting
complete cookie data after each website visit by the crawler, or after
visiting a random selection of websites. Therefore, we have developed
a function that allows for the export of all cookies, both first and
third-party, accumulated in the browser managed by OpenWPM,
regardless of the circumstances.

4 MEASUREMENT STUDY METHODOLOGY
In this section, our measurement study methodology that utilizes the
FPTrace framework is introduced. Initially, in Section 4.1, we outline
the simulation of interest personas, which emulate real person’s
interests. Following this, in Section 4.2, the collection of bids and
HTTP data using various settings is presented, employing simulated
interest personas to visit websites that use Prebid.js. Subsequently, the
detection of cookie restoration post removal is discussed in Section
4.3, followed by an elaboration on the identification of browser
fingerprinting-associated cookie restoration in Section 4.4. Figure 1
provides an overview of the measurement study methodology. Finally,
in Appendix A.3, the configuration for discerning whether browser

1. Simulating Interest Personas

2. Collecting Bids and HTTP Data

3. Detecting Cookie Restoration 4. FP Related Cookie Restoration

Bids HTTP

Data
Analysis

Cookies Test &
Inspection

Websites
Have Ads 

General
Websites

Website List in 1:
Same Topic?
Bypass Bot 
Detection?Websites

Yes

Website
List

Website List in 2:
Display Ads?

Header 
Bidding?Websites

Yes

Website
List

Figure 1: High level overview of measurement study methodology.
In Step 1, We create browser persona by visiting a list of websites.
This step is called “Simulating Interest Personas”. In Step 2, we
first use trained persona to visit websites which display ads, then
collect bids and HTTP data. This step is called “Collecting Bids
and HTTP Data”. In Step 3, we extract cookies from the browser
profile and compare them between different experiment settings. This
step is called “Detecting Cookie Restoration”. In Step 4, we analyze
the manual inspect extracted cookies. This step is called “Detecting
Fingerprinting Related Cookie Restoration”.

fingerprinting persists for data collection post-user opt-out under
GDPR and CCPA protection is discussed.

4.1 Simulating Interest Personas
A Persona encapsulates key attributes of a real individual, encompass-
ing aspects such as personal interests, characteristics, and traits. Like-
wise, Browser Personas serve to embody the browsing preferences
of web users, encompassing factors like desired purchases, vacation
destinations, and preferred news topics. Websites and third-party
services seek to understand, track, and tailor personal advertisements
to users, making Browser Interest Personas invaluable in this en-
deavor. To understand how advertisers perform bidding based on
users’ interests, it is essential to simulate browsers with specific
interests before engaging in Prebid.js auctions for displaying ads.
We begin by compiling a list of websites, denoted as𝑊𝑝 , within a
particular topic. Alexa provides topic-specific website lists, but not
all are closely related to the topic keywords. To address this, we
employ Google search to construct distinct website lists. We select
the first 40 websites from the search results and manually inspect
them to eliminate duplicates.

Once we have compiled the website list𝑊𝑝 , we need to bypass
web driver detection, as OpenWPM uses Selenium for automation.
This involves overwriting the JavaScript API Navigator.webdriver,
which distinguishes between real user visits and automation.

Subsequently, we direct OpenWPM to sequentially visit websites
from 𝑊𝑝 . After visiting the last website on the list, we save the
browser profile. This profile, denoted as 𝑃𝑝 , represents a simulated
persona with an interest in the specific topic. This is Step 1 (A1, A*1,
B1) in Figure 2. We present various fingerprinting configurations
in the browser extension. When the framework initializes, it will
either load the spoofed fingerprints or not, depending on the specific
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with Spoofed 
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B1. Visit 
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Bids and HTTP 
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A*. New Profile 

with Benign 
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Websites
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A3. Save 
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Each 

Website

A*3. Save 
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HTTP data

A*4. Don’t 
Update Profile. 

Load Again.

B2. Visit 
Each 

Website

B3. Save 
Bids and 

HTTP data

B4. Don’t 
Update Profile. 

Load Again.

Figure 2: High level overview of advertisement experiment. In step 1,
FPTrace will visit websites sequentially to keep updating the browser
profile. In Step 2, FPTrace will control the browser with updated
profile to visit each website. In Step 3, FPTrace will record the bids
data and HTTP data. In Step 4, FPTrace will not update the current
browser profile, and load the profile updated after Step 1. After
visiting all websites in Step 2, FPTrace will compare the bids data
and HTTP data between A, A* and B.

settings. This ensures the framework can operate automatically under
different configurations. All settings will activate simultaneously. It
should be noted that the websites in Step 1 are visited sequentially.
Step 1 and Step 2 for different configurations A1, A*1, B1, A2, A*2,
B2 are run in parallel. The websites in Step 1 are listed in Appendix
A.1. The websites in Step 2 are listed in Appendix A.2

4.2 Collecting Bids and HTTP Data
To collect bids data and investigate factors affecting bid behavior
under the same browser profile, we first establish a data collection
website list,𝑊𝑏𝑖𝑑𝑠 . We create a detector to visit the Alexa top 10,000
websites list. Functions are developed to identify websites utilizing
the Header Bidding implementation tool Prebid.js. The default API,
pbjs, facilitated by Prebid.js, furnishes bidding data from various
advertisers. Upon detection of Prebid.js during a website visit and
successful retrieval of bidding records via the pbjs API, the website is
flagged. Subsequently, all flagged websites are stored in the list𝑊𝑏𝑖𝑑𝑠 .
After assembling the list, we use the 𝑃𝑝 profile to visit𝑊𝑏𝑖𝑑𝑠 . Step 2
(A2, A*2, B2) in Figure 2 represents the process. After we gathering
bid data and HTTP data from the Step 3 (A3, A*3, B3) in Figure 2,
we can do the analysis to measure the targeting. The updated profile
will remain the same during Step 2 and Step 3. This could eliminate
of the effects from the previous visited websites in Step 2. In Step
3 (A3, A*3, B3) depicted in Figure 2, it is important to highlight
that we extend our consideration beyond just the winning bid to
encompass all advertising participants. Even if these participants did
not secure the bid, their bids still offer valuable insights into their
interest in the current visitor. Therefore, we carefully collect and
consider their bids as part of our methodology.

To explore the impact of browser fingerprinting on bid changes,
we first use the true browser fingerprints in experiments A and A*,
which are represented in Figure 2. It should be noted that the updated
profiles in A and A* are different. We do not use the same profile for
the different experiment, even the settings are all the same. We also
have another experiment, which is denoted as B in Figure 2. In this

A. New Profile 
with Benign 
Fingerprints

B. New Profile 
with Spoofed 
Fingerprints

A1. Visit 
Websites

B1. Visit 
Websites

A. Updated 
Profile

B. Updated 
Profile

A2. Export 
Cookies

B2. Export 
Cookies

A-B. Compare 
Cookies between 
Same Websites. 

A*. New Profile 
with Benign 
Fingerprints

A*1. Visit 
Websites

A*. Updated 
Profile

A*2. Export 
Cookies

Figure 3: High level overview of cookie restoration experiment. In
Step 1, FPTrace will control the browser to visit websites. In Step 2,
FPTrace will export all cookies including including 1st party and
3rd party cookies. In A and A*, FPTrace will use the same browser
fingerprints, and same experiment conditions. In B, FPTrace will
use a different browser fingerprint. Then FPTrace will do cookie
comparisons between A, A* and B.

Table 1: Various configurations involving browser profiles, cookies,
browser fingerprinting, and IP addresses.

Setting Number New Profile? Have Cookies? True Fingerprint? True IP?
a Yes No Yes Yes
b No Yes Yes Yes
c No Yes No Yes
d No No Yes Yes
e No No No Yes

setting, we replace the true browser fingerprint by using a brand new
spoofed fingerprint.

4.3 Detecting Cookie Restoration
Our next step is to examine cookie restoration under various settings.
In the "True Setting" (𝑆𝑡𝑟𝑢𝑒 ), which is represented as A in Figure
3, we initiate a new browser profile without any pre-existing data,
including browsing history and cookies. By using the OpenWPM
framework to load the browser profile, and sequentially visit a list
of websites, the profile is updated after each visit. The resulting
profile is termed 𝑃𝑡𝑟𝑢𝑒 , and the exported cookie from profile 𝑃𝑡𝑟𝑢𝑒
is designated as 𝐶𝑡𝑟𝑢𝑒 .

Following this, we erase all data, including browsing history and
cookies, from the browser profile. Initially, we unzip the browser
profile, remove all data associated with history and cookies, and
subsequently zip the remaining files to generate the new browser
profile. To ensure thorough data removal, we opt for creating a new
browser profile instead of using 𝑃𝑡𝑟𝑢𝑒 . This new profile, labeled 𝑃0,
is employed to visit the same websites as in 𝑆𝑡𝑟𝑢𝑒 while operating
on the same machine and IP address. The exported cookie from
𝑃0 is denoted as 𝐶0, and this setting is identified as 𝑆0, which is
represented as A* in Figure 3.

To detect cookie restoration, we compare all cookies between
𝐶𝑡𝑟𝑢𝑒 and 𝐶0, matching them based on cookie key name, value, and
owner. Cookies in𝐶0 that precisely match those in𝐶𝑡𝑟𝑢𝑒 with regard
to key name, value, and owner are considered restored. We collect
these restored cookies into a new set called 𝐶𝑇𝑟𝑢𝑒−0.
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4.4 Detecting Fingerprinting Related Cookie
Restoration

Cookie restoration may result from factors like supercookies and IP
addresses. We explore whether browser fingerprinting also plays a
role in cookie restoration. In setting 𝑆1, we maintain the same machine
and IP address as in 𝑆𝑡𝑟𝑢𝑒 but focus on the browser fingerprinting
aspect. We integrate Gummy Browser spoofing techniques into an
extension to manipulate browser fingerprinting.

After loading the Gummy Browser extension and starting with a
fresh browser profile, we visit the same website list as in 𝑆𝑡𝑟𝑢𝑒 . This
process generates an updated browser profile, 𝑃1, and the associated
cookie, 𝐶1. This is represented as B in Figure 3.

Distinguishing setting 𝑆1 from 𝑆𝑡𝑟𝑢𝑒 , the only variable altered is
the browser fingerprinting. Therefore, any cookies in 𝐶𝑇𝑟𝑢𝑒−0 that
cannot be found in 𝐶1 serve as evidence that browser fingerprinting
contributes to cookie restoration. These cookies are not fully restored
when browser fingerprinting is modified.

Additionally, when comparing 𝐶𝑇𝑟𝑢𝑒−0 and 𝐶1, we may identify
cookies with altered values but matching key names and owners. This
observation further confirms that browser fingerprinting influences
cookie restoration by demonstrating that cookie values change when
fingerprinting is manipulated.

It should be noted that all settings A1, A*1, B1 will activate
simultaneously. The websites in Step 1 are listed in Appendix A.2

5 EXPERIMENT SETTING
In this section, the objective of our experiment is to investigate
the utilization of fingerprinting techniques in online advertising,
particularly focusing on its impact on bid behavior and cookie
restoration. The experiment is structured into several steps, each
designed to simulate different scenarios involving fingerprinting,
cookies, and IP addresses.

5.1 Initial Profiling and Data Collection
The first step involves the creation of an initial profile by visiting
a range of websites related to "Computers". The full website list
of 𝑊𝑝 here is listed in Appendix A.1. During this phase, cookies
are enabled, and various fingerprinting techniques are deployed to
collect data for analysis. The recorded data includes fingerprinters
used and data sharing activities. The generated profile is then saved
for subsequent comparisons.

5.2 Variation in Scenarios
The second step introduces variations to the initial profile, encom-
passing different combinations of cookies, fingerprinting techniques,
and IP addresses. The scenarios examined are as follows:

a. A new profile is introduced, and bids and cookies are collected
while visiting websites. This scenario provides a baseline for
comparison with true fingerprints and true IP addresses (new
profile, true fingerprint, true IP).

b. Profile with cookies is employed, bids and cookies are collected.
This scenario explores the impact of true fingerprinting with the
same IP addresses. This scenario serves as a baseline for true
fingerprinting (have cookies, true fingerprint, true IP).

c. Profile with cookies is employed, with a different IP address and
using the alternate fingerprints, while collecting bids and cookies.
This scenario delves into the effects of both fake fingerprints and
fake IP addresses (have cookies, fake fingerprint, true IP).

d. Profile without cookies is used to visit websites, allowing the
collection of bids and cookies (no cookies, true fingerprint, true
IP).

e. Profile without cookies is used, but with a different fingerprints,
and bids and cookies are collected. This scenario investigates the
role of different fingerprints with a true IP address (no cookies,
fake fingerprint, true IP).
We summarize the settings in Table 1.

5.3 Experiment Locations
FPTrace was primarily implemented on devices situated in the United
States, where we gathered bid data, monitored HTTP events, and
conducted cookie restoration detection. In addition to examining
regions lacking explicit privacy regulations in the United States,
we also evaluated the use of browser fingerprinting in areas where
privacy regulations are in place. The location selection of GDPR
and CCPA experiments are explained in Appendix A.4.

6 RESULTS AND EVALUATION
In this section, we first present the results of our experiments con-
ducted in the United States, where privacy regulation protection was
absent. These experiments were focused on data sharing and cookie
restoration through browser fingerprinting, which fall outside the
scope of current privacy regulations. Following this, we examine
whether data sharing based on browser fingerprinting also takes place
under the GDPR and CCPA privacy regulations in Appendix A.5
and A.6. The raw data we collected is listed on Onedrive [6].

6.1 Bid Values and HTTP Events
6.1.1 Have Cookies. We collect and analyze bids data across
different settings, specifically transitioning from “have cookies, have
data, true fingerprints, true IP address" to “have cookies, have data,
fake fingerprints, true IP address." The sole differentiating factor here
is the presence of “true/fake fingerprints." To ensure data consistency,
we conduct the experiment setting “have cookies, have data, true
fingerprints, true IP address" twice to verify minimal bid data and
HTTP data fluctuations. Table 2 illustrates that bid values between
two instances of “True FP True IP" are quite similar, meeting our
objective of running them twice. However, when comparing “True
FP True IP" to “Fake FP True IP," in Table 2, there are substantial
differences in median and maximum bid values. This suggests that
changes in browser fingerprinting impact bid values, implying that
alterations in browser fingerprinting influence targeting and tracking
in advertising.

We have also generated a CDF plot (see Figure 4a) using bid data
from the two experiment settings. The distributions of CDF between
different settings are similar when the CDF score is lower than 0.8, as
all bids values are lower than 1. So we only display the distributions
when the CDF scroe is larger than 0.8. In this CDF plot, the trends for
two instances of “True FP True IP" are also similar, signifying that
bid data remains stable under the same browser fingerprint. However,
the introduction of fake fingerprints alters the trend of bid data. This
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(a) (b)

Figure 4: Figure a is the CDF of different fingerprints and IPs settings
in keeping cookies. Figrue b is the CDF of different fingerprints and
IPs settings in removing cookies. The range of bids value is from 0 to
5. The range of CDF score is between 0.8 to 1. In Figure a, We can
observe that the red curve is much different from the other two curves
which are closer to each other, thus showing that fingerprinting is
being used for tracking. In Figure b We can observe that the red curve
is much different from the other two curves which are closer to each
other, thus showing that fingerprinting is being used for tracking.

Table 2: The bid value in different fingerprints and IPs settings. Avg
represents the average of all bid value. Median represents the median
bid value. Min represents the minimum bid value. Max represents
the maximum bid value. We can observe that the first row values are
different from the other two rows, which are similar to each other,
thus showing that the change in FP creates a more marked impact on
the bid values indicating that fingeprinting is being used for tracking.

Avg Std Median Min Max
Fake FP True IP 0.60 1.14 0.19 0.00 10.02
True FP True IP 0.51 0.86 0.25 0.00 5.45
True FP True IP 2 0.46 0.93 0.23 0.00 5.52

indicates a significant difference in the distribution of bids between
the two settings. The CDF plot provides evidence that changes in
browser fingerprinting affect targeting and tracking in advertising.

Furthermore, we calculated the number of HTTP chains, syncing
events, and total HTTP records using HTTP data from the two
settings. The results are outlined in Table 3. It is evident that the
number of total HTTP chains in two instances of “True FP True
IP" is similar and exceeds 36,000. However, changing the browser
fingerprint reduces this number to 6,345, a substantial drop. This
reduction indicates fewer HTTP chains can be established, implying
a decrease in redirects and a reduced ability for websites to recognize
the browser profile. A similar pattern emerges in syncing events: the
number of syncing events in “Fake FP True IP" is 50% less than in
“True FP True IP," signifying a 50% reduction in data sharing. The
total number of HTTP records in “Fake FP True IP" is nearly 65%
less than in “True FP True IP." The decrease in HTTP records also
implies reduced recognition on the internet.

Takeaway [Have Cookies]:
(1) Bids trend and range are changed after changing the browser fingerprinting.
(2) HTTP chains, syncing events and total records drop after changing the

browser fingerprinting.

6.1.2 No Cookies. We gather and scrutinize bid data across various
scenarios, particularly transitioning from a state characterized by “no
cookies, have data, true fingerprints, true IP address" to a state with
“no cookies, have data, true fingerprints, true IP address". To ensure
the consistency of the data, we repeat the experiment under the setting
“have cookies, have data, true fingerprints, true IP address" to confirm

Table 3: The number of events and data through HTTP data. Chains
represents the number of chains we built using collected HTTP data.
Syncing represents the number of chains containing the data sharing.
Records represents the total number of HTTP records collected in
this settings. We can observe that the first row values are different
from the other two rows, which are similar to each other, thus showing
that the change in FP creates a more marked impact on the bid values
indicating that fingeprinting is being used for tracking.

Chains Syncing Records
Fake FP True IP 6345 421 109802
True FP True IP 36446 888 313094
True FP True IP 2 37929 895 318208

Table 4: The bid value in different fingerprints and IPs settings. Avg
represents the average of all bid value. Median represents the median
bid value. Min represents the minimum bid value. Max represents
the maximum bid value. Setting “True FP True IP 2” do keep the
cookies. Other two settings do not keep the cookies.

Avg Std Median Min Max
Fake FP True IP 0.42 0.89 0.13 0.00 5.92
True FP True IP 0.38 0.54 0.19 0.00 5.80
True FP True IP 2 0.35 0.41 0.17 0.00 2.13

minimal variations in bid data and HTTP data. In the context of “true
fingerprints", we introduce one fabricated fingerprint, while “fake fin-
gerprints" includes another counterfeit fingerprint. Table 4 provides
an overview of bid values across these three different configurations.
When we keep the fingerprints consistent and eliminate cookies, the
average and median bid values experience marginal increases, but
the maximum bid value rises significantly. Following the alteration
of fingerprints, both the average and maximum bid values increase,
while the median value experiences a notable decrease. This suggests
that changes in browser fingerprinting have an impact on bid values,
underscoring their influence on targeting and tracking in advertising.

We have also generated a CDF plot (see Figure 4b) using bid
data from the two experimental configurations. The distributions
of CDF between different settings are similar when the CDF score
is lower than 0.8, as all bids values are lower than 1. So we only
display the distributions when the CDF scroe is larger than 0.8. In
this CDF plot, the patterns for two instances of "True FP True IP"
are notably similar, indicating that bid data remains stable when the
same browser fingerprint is used. However, the introduction of fake
fingerprints disrupts the trend of bid data, signifying a substantial
difference in bid distribution between the two settings. The CDF plot
furnishes evidence that variations in browser fingerprinting influence
targeting and tracking in advertising.

Furthermore, we computed the number of HTTP chains, synchro-
nization events, and total HTTP records using HTTP data from the
two configurations. The outcomes are summarized in Table 5. It is
apparent that the total number of HTTP chains remains comparable
across all three settings. Upon the removal of cookies, this number
decreased by approximately 13 percent, and further dropped by 2
percent when cookies were changed. The number of synchronization
events exhibited consistency across the three settings, while the total
count of HTTP records continued to decrease after cookies were
removed and fingerprints were altered. The decrease in HTTP records
also suggests reduced online recognition.
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Table 5: The number of events and data through HTTP data. Chains
represents the number of chains we built using collected HTTP data.
Syncing represents the number of chains containing the data sharing.
Records represents the total number of HTTP records collected in
this settings. CR represents the setting of Cookie Removed. All data
are from settings including removing cookies.

Chains Syncing Records
Fake FP True IP (CR) 9606 632 119673
True FP True IP (CR) 9796 624 124543
True FP True IP 2 11242 649 128781

Takeaway [No Cookies]:
(1) Bids trend and range are changed after removing cookies and changing the

browser fingerprinting.
(2) HTTP chains, and total records drop after removing cookies and changing

the browser fingerprinting.

Based on our analysis of bid values and HTTP events, we can draw
the conclusion that browser fingerprinting indeed plays a significant
role in targeting and tracking within the realm of advertising.

6.2 Cookie Restoration
After the cookie data comparison, we totally detected 90 cookie key
and host pairs. We documented 378 instances of cookie restoration
related to fingerprinting across 90 unique combinations of cookie
keys and host pairs across all settings. Subsequently, we conducted
a comprehensive manual inspection of all 90 cookie key and host
pair combinations. In light of our thorough experiments, we cannot
definitively assert that browser fingerprinting is employed to restore
cookies. The full details are listed in Appendix A.7.

7 DISCUSSION AND LIMITATIONS
Our experiment was conducted using IP addresses from two locations
in the United States, both of which are located in the United States
and are not subject to privacy regulations such as GDPR [16] or
CCPA [17]. In regions protected by such regulations, trackers like
cookies are prohibited from tracking users once they opt out. However,
our experiment has revealed that advertisers may employ browser
fingerprinting to track users without providing any notification. It
remains uncertain whether advertisers can continue using browser
fingerprinting to track users, as there is currently no established
framework for auditing advertisers in this context. It’s important to
note that our experiment cannot be utilized to assess advertisers’
behavior within the constraints of privacy regulations.

Another limitation of our study is that all experiments were
conducted on the Linux platform. We cannot determine whether
users of Windows devices, MacOS devices, or mobile devices can
still be tracked by advertisers using browser fingerprinting techniques.
While some of our fake fingerprint data were obtained from Windows
devices, MacOS devices, or mobile devices, which we used to emulate
our experimental device browsers, it would be valuable to incorporate
real Windows devices, MacOS devices, or mobile devices in the “True
Fingerprints" settings to gain a more comprehensive understanding.

Additionally, there is uncertainty regarding whether websites
visited by FPTrace can accurately distinguish between visits from a
crawler and those from real users. Despite our efforts, such as altering
JS API values and simulating human behaviors, we cannot be entirely
certain that there are no undisclosed techniques for detecting bot

visits. If FPTrace’s visits are identified as originating from a bot, the
accuracy of our results may be compromised.

Compared to the work of Liu et al.[34], there are notable dif-
ferences in our study in both experimental design and research
objectives. While our work focuses on exploring various fingerprint-
ing settings and assessing whether different privacy regulations can
constrain fingerprinting techniques, Liu et al.[34] did not involve any
specific fingerprinting configurations. Instead, their research aimed
to evaluate whether CMPs, websites, or advertisers comply with
users’ consent choices.

8 RELATED WORK
Previous research has examined the connection between online track-
ing and ad targeting. Wills et al.[45] explored Google and Facebook’s
ad systems, identifying various ad types. Google sometimes showed
non-contextual ads related to sensitive topics, even without relevant
user activity. On Facebook, external browsing had no clear link to
ads, but using the “Like” feature on third-party content influenced
ad recommendations. Zeng et al.[48] studied the impact of user
attributes, demographics, and contextual factors on ad targeting and
bid values. Using data from 286 participants across 10 websites,
they found targeting was primarily shaped by the website, retargeting
methods, and user behavior, with demographics playing a minor role.
Variations in bid values were mostly linked to the website and user
actions, highlighting the significance of contextual targeting. Cassel
et al.[22] analyzed web tracking across devices, noting fewer tracking
requests on mobile. Privacy-focused browsers reduced tracking but
showed susceptibility to fingerprinting, without delving into its role
in ads. Fouad et al.[27] investigated cookie restoration using VPNs,
which might introduce latency. Our approach, using real IPs and
manual inspections, revealed that factors like time and website data
could lead to restoration resembling fingerprinting.

9 CONCLUSION
In this study, we address a gap in research and regulatory practices
by investigating browser fingerprinting’s role in ad tracking. We
introduce “FPTrace”, a framework for detecting fingerprinting usage,
especially when changes in fingerprints disrupt ad targeting. FPTrace
is evaluated in web environments where user data is routinely col-
lected for ads. Our method involves A/B experiments, data leakage
analysis, fingerprint manipulation, and examining ad bidding behav-
ior. We explore how altered fingerprints affect cookie restoration,
hypothesizing that prior user knowledge influences bid changes.

Key contributions include the FPTrace framework, integrated
with OpenWPM, which simulates user interactions, collects bid data,
and records HTTP data. Our findings show browser fingerprinting
significantly impacts ad tracking, with noticeable differences in bid
values and a reduction in HTTP records when fingerprints change.
While we find some connection between fingerprints and cookies,
evidence of direct involvement in cookie restoration is inconclusive.
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A APPENDIX
A.1 Training Websites

(1) https://www.bestbuy.com/site/electronics/computers-pcs/ab
cat0500000.c?id=abcat0500000

(2) https://www.newegg.com/Computer-Systems/Store/ID-3

(3) https://www.bestbuy.com/site/searchpage.jsp?id=pcat17071&s
t=best+buy+computers+for+sale

(4) https://www.pcmag.com/picks/the-best-desktop-computers

(5) https://www.consumerreports.org/cro/computers/buying-gu
ide/index.htm

(6) https://www.walmart.com/cp/computers/3951

(7) https://www.amazon.com/Computers-Tablets/b?ie=UTF8&n
ode=13896617011

(8) http://www.newegg.com/

(9) https://www.dell.com/en-us

(10) https://www.hp.com/us-en/shop/cat/desktops

(11) https://www.adorama.com/l/Computers

(12) https://edu.gcfglobal.org/en/computerbasics/what-is-a-comp
uter/1/

(13) https://www.tomsguide.com/best-picks/best-computers

(14) https://www.costco.com/computers.html

(15) https://www.microsoft.com/en-us/store/b/pc

(16) https://www.britannica.com/technology/computer

(17) https://www.cyberpowerpc.com/page/Intel/11th-Gen-Desk
tops/

(18) https://www.backmarket.com/refurbished-pc-desktop-comp
uter.html

(19) https://www.bhphotovideo.com/c/browse/Computers-Soluti
ons/ci/9581

(20) https://www.microcenter.com/

(21) https://www.target.com/c/computers-office-electronics/-/N-
5xtfc

(22) https://www.officedepot.com/cm/tech/shop-pcs

(23) https://www.tigerdirect.com/

(24) https://www.staples.com/Laptops-Computers/cat_SC3

(25) https://www.lenovo.com/us/en/

(26) https://www.cdw.com/content/cdw/en/products/computers.ht
ml

(27) https://www.energystar.gov/products/computers

(28) https://www.xidax.com/xidaxsale

(29) https://buildredux.com

(30) https://www.corsair.com

(31) https://www.magicmicro.com

(32) https://www.thebudgetpcbuilder.com/

(33) https://www.ebay.com/b/Computers-Tablets-Network-Hard
ware/58058/bn_1865247

(34) https://computersfortheblind.org/

(35) https://www.nytimes.com/wirecutter/electronics/computers/

(36) https://www.samsung.com/us/computing/

(37) https://www.lg.com/us/computers

(38) https://www.apple.com/

(39) https://www.sciencedirect.com/journal/computers-environm
ent-and-urban-systems

(40) https://www.ibuypower.com/

A.2 Testing Websites
(1) https://tribunnews.com

(2) https://grid.id

(3) https://nytimes.com

(4) https://ettoday.net

(5) https://kompas.com

(6) https://indiatimes.com

(7) https://globo.com
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https://www.bestbuy.com/site/electronics/computers-pcs/abcat0500000.c?id=abcat0500000
https://www.bestbuy.com/site/electronics/computers-pcs/abcat0500000.c?id=abcat0500000
https://www.newegg.com/Computer-Systems/Store/ID-3
https://www.bestbuy.com/site/searchpage.jsp?id=pcat17071&st=best+buy+computers+for+sale
https://www.bestbuy.com/site/searchpage.jsp?id=pcat17071&st=best+buy+computers+for+sale
https://www.pcmag.com/picks/the-best-desktop-computers
https://www.consumerreports.org/cro/computers/buying-guide/index.htm
https://www.consumerreports.org/cro/computers/buying-guide/index.htm
https://www.walmart.com/cp/computers/3951
https://www.amazon.com/Computers-Tablets/b?ie=UTF8&node=13896617011
https://www.amazon.com/Computers-Tablets/b?ie=UTF8&node=13896617011
http://www.newegg.com/
https://www.dell.com/en-us
https://www.hp.com/us-en/shop/cat/desktops
https://www.adorama.com/l/Computers
https://edu.gcfglobal.org/en/computerbasics/what-is-a-computer/1/
https://edu.gcfglobal.org/en/computerbasics/what-is-a-computer/1/
https://www.tomsguide.com/best-picks/best-computers
https://www.costco.com/computers.html
https://www.microsoft.com/en-us/store/b/pc
https://www.britannica.com/technology/computer
https://www.cyberpowerpc.com/page/Intel/11th-Gen-Desktops/
https://www.cyberpowerpc.com/page/Intel/11th-Gen-Desktops/
https://www.backmarket.com/refurbished-pc-desktop-computer.html
https://www.backmarket.com/refurbished-pc-desktop-computer.html
https://www.bhphotovideo.com/c/browse/Computers-Solutions/ci/9581
https://www.bhphotovideo.com/c/browse/Computers-Solutions/ci/9581
https://www.microcenter.com/
https://www.target.com/c/computers-office-electronics/-/N-5xtfc
https://www.target.com/c/computers-office-electronics/-/N-5xtfc
https://www.officedepot.com/cm/tech/shop-pcs
https://www.tigerdirect.com/
https://www.staples.com/Laptops-Computers/cat_SC3
https://www.lenovo.com/us/en/
https://www.cdw.com/content/cdw/en/products/computers.html
https://www.cdw.com/content/cdw/en/products/computers.html
https://www.energystar.gov/products/computers
https://www.xidax.com/xidaxsale
https://buildredux.com
https://www.corsair.com
https://www.magicmicro.com
https://www.thebudgetpcbuilder.com/
https://www.ebay.com/b/Computers-Tablets-Network-Hardware/58058/bn_1865247
https://www.ebay.com/b/Computers-Tablets-Network-Hardware/58058/bn_1865247
https://computersfortheblind.org/
https://www.nytimes.com/wirecutter/electronics/computers/
https://www.samsung.com/us/computing/
https://www.lg.com/us/computers
https://www.apple.com/
https://www.sciencedirect.com/journal/computers-environment-and-urban-systems
https://www.sciencedirect.com/journal/computers-environment-and-urban-systems
https://www.ibuypower.com/
https://tribunnews.com
https://grid.id
https://nytimes.com
https://ettoday.net
https://kompas.com
https://indiatimes.com
https://globo.com


(8) https://liputan6.com

(9) https://uol.com.br

(10) https://speedtest.net

(11) https://alwafd.news

(12) https://theguardian.com

(13) https://espn.com

(14) https://cnet.com

(15) https://brilio.net

(16) https://businessinsider.com

(17) https://foxnews.com

(18) https://breitbart.com

(19) https://metropoles.com

(20) https://ladbible.com

(21) https://investopedia.com

(22) https://realtor.com

(23) https://nypost.com

(24) https://sportbible.com

(25) https://hurriyet.com.tr

(26) https://goo.ne.jp

(27) https://softonic.com

A.3 GDPR and CCPA Configuration
In GDPR and CCPA experiments, we set 6 different settings on
each CMP and location combination. The number of each setting is
described as following:

(0) New profile, True fingerprint.
(1) Trained profile, True fingerprint, Have Cookies. (Base Line)
(2) Trained profile, Fake fingerprint, Have Cookies.
(3) Trained profile, True fingerprint, Have Cookies. (Same setting

as 1)
(4) Trained profile, Fake fingerprint, No Cookies.
(5) Trained profile, True fingerprint, No Cookies.

The complete workflow of GDPR and CCPA experiments is listed
in Figure 5. Four CMPs Cookiebot, Quantcast, Onetrust, and Didomi
CMPs are employed in our experiments, along with the central

opt-out platform NAI. True or fake fingerprints are set in step C in
Figure 5.

A. Simulating Personas C. Collecting Data 

HTTP

Data
Analysis

Websites
Have Ads 
, CMPs 

and 
support 

Prebid.JS

NAI

Visit Same 
Websites

B. Opt-Out/In D. Analysis 

HTTP
Data

Figure 5: High level overview of GDPR/CCPA experiment. Step A
represents the training persona, with the original fingerprint. Step B
involves Opt Out or Opt In actions on websites with ads, utilizing
CMPs, and employing Prebid.js, or on the central Opt Out website
NAI. Step C involves the collection of HTTP data. Step D represents
the data analysis.

In our experiments, “Opt out” refers to scenarios where the user
declines to provide consent to the website, while “Opt in” denotes
instances where the user grants consent. All interactions with these
different CMPs are conducted automatically.

A.4 Experiment Locations
Privacy regulations like the General Data Protection Regulation
(GDPR) [16] and the California Consumer Privacy Act (CCPA) [17]
are designed to safeguard user personal information. Under GDPR,
customers have assurance against privacy breaches until they consent
on websites. For CCPA protection, customers must actively refuse
consent on websites to avoid privacy breaches. In our experimental
setup, we initially evaluate data sharing related to fingerprinting
and cookie restoration using local IP addresses in locations within
the United States, where privacy regulation protection was absent.
Subsequently, we implement FPTrace on AWS servers located in
Frankfurt, Germany, and California, USA. Frankfurt-based visits
fall under GDPR protection, while those from California are under
CCPA. The aim of selecting these varied regions is to discern the
impact of browser fingerprinting in environments with and without
privacy regulation protection.

For visitors accessing websites from Europe or California, USA,
the sites are expected to present a consent panel, allowing them to
either agree or refuse consent. CMPs are third-party services that
facilitate this consent process for users. There is a variety of CMP
services available. As identified by Liu et al.[34], four prominent
CMPs - Cookiebot, Quantcast, Onetrust, and Didomi - are among
the most widely used and can be considered for use in this con-
text. FPTrace can automatically handle the opt-out and opt-in. To
ensure compliance with Didomi, we first verify the existence of
the consent dialog using Didomi.notice.isVisible. We then employ
Didomi.setUserDisagreeToAll to opt out and proceed to conceal the
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consent dialog by adjusting the display attributes of its markup to
‘none’. Similarly, for OneTrust, we confirm the presence of the consent
dialog via window.OneTrust, executing window.OneTrust.RejectAll
to opt out and subsequently conceal the dialog. In the case of
CookieBot, we validate the presence of the consent dialog through
window.Cookiebot, navigating the DOM to locate the opt-out button
with the ID CybotCookiebotDialogBodyButtonDecline and activat-
ing it. Regarding Quantcast, we search the DOM for the consent
dialog using the qc-cmp2-summary-buttons class name, clicking
the button labeled ‘Reject’ or similar. If the rejection option is not
initially visible, we expand the dialog by selecting the ’more options’
button and then proceed to click ‘Reject All’. Additionally, we assess
the effectiveness of the central opt-out service Network Advertising
Initiative (NAI) [11], which enables users to refuse consent through
a single visit to its website. Consequently, other websites should
comply by not utilizing the users’ consent if this service is used.

A.5 Browser Fingerprinting Data Sharing under
Privacy Regulations

Tables of full results from CMP Cookiebot, Didomi and Quantcast,
and NAI are listed in Appendix A.6.

Under GDPR regulations, Cookiebot showed a significant increase
in the number of HTTP Chains, Syncing Events, and HTTP records
when cookies were removed, observed in both Opt Out and Opt In
settings. However, using a fake fingerprint did not result in notable
changes in either setting. Full details are listed in Appendix A.6
Table 9.

With Didomi, also under GDPR, the various settings, including
Opt Out versus Opt In and True/Fake fingerprint or Have/No Cookies
scenarios, did not exhibit substantial differences. Full details are
listed in Appendix A.6 Table 11.

In the case of Onetrust, under GDPR conditions, an increase
in Syncing Events was observed when the system utilized fake
fingerprints. This rise was particularly notable in scenarios combining
Fake Fingerprint and No Cookies in the Opt Out setting, suggesting
that browser fingerprinting might be used for data syncing even after
users deny consent on websites using Onetrust. Full details are listed
in Table 7.

For Quantcast, regardless of Opt Out or Opt In settings under
GDPR, the application of Fake Fingerprint led to a more pronounced
increase in syncing events than in HTTP chains. This suggests that
browser fingerprinting might be employed for syncing data regardless
of whether the user consents or denies consent on websites using
Quantcast. Full details are listed in Appendix A.6 Table 13.

Lastly, in the context of NAI under GDPR, a pattern similar to
Quantcast was observed. The number of syncing events and HTTP
chains significantly increased when the fingerprints were altered,
indicating that browser fingerprinting might be used for data syncing
irrespective of the user’s decision to give or reject consent on the
NAI website. Full details are listed in Appendix A.6 Table 15.

Takeaway [Browser Fingerprinting in GDPR]:
(1) There is no conclusive evidence to suggest that Cookiebot and

Didomi participate in data sharing through browser fingerprinting
for user identification in both Opt Out and Opt In settings. Websites
utilizing Onetrust might not be involved in data sharing activities
that use browser fingerprinting to identify users in Opt In setting.

(2) It appears that websites utilizing Onetrust, Quantcast, and NAI
might be involved in data sharing activities that use browser fin-
gerprinting to identify users in Opt Out setting. Quantcast and
NAI might be involved in data sharing activities that use browser
fingerprinting to identify users in Opt In setting.

Under the CCPA regulation, Cookiebot’s diverse settings, such as
Opt Out vs Opt In and True/Fake fingerprint or Have/No Cookies
scenarios, showed no significant differences. Full details are listed in
Appendix A.6 Table 8.

Likewise, under CCPA regulation, Didomi’s settings, including
Opt Out vs Opt In and True/Fake fingerprint or Have/No Cookies
scenarios, displayed no notable differences. Full details are listed in
Table Appendix A.6 10.

Under CCPA regulations, with Onetrust, a notable disparity was
observed in the Opt Out setting between settings 2 and 1, as well as
between 2 and 3. This suggests possible use of browser fingerprinting
in data synchronization. Full details are listed in Table 6.

In the case of Quantcast, under CCPA regulation, the various
settings including Opt Out vs Opt In and True/Fake fingerprint or
Have/No Cookies scenarios, also showed negligible differences. Full
details are listed in Appendix A.6 Table 12.

Lastly, under CCPA regulation with NAI, in the Opt Out setting,
there was a significant difference between setting 2 and both settings
1 and 3, indicating a potential use of browser fingerprinting for data
synchronization. Full details are listed in Appendix A.6 Table 14.

Takeaway [Browser Fingerprinting in CCPA]:
(1) There is no conclusive evidence to suggest that Cookiebot, Didomi

and Quantcast participate in data sharing through browser finger-
printing for user identification in both Opt Out and Opt In settings.
Websites utilizing Onetrust, and NAI might not be involved in data
sharing activities that use browser fingerprinting to identify users in
Opt In setting.

(2) It appears that websites utilizing Onetrust, and NAI might be
involved in data sharing activities that use browser fingerprinting to
identify users in Opt Out setting.

A.6 Analysis of HTTP data under GDPR and
CCPA

Within this section, we provide information in additional tables for
the analysis of HTTP data under the protection of GDPR or CCPA.
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Table 6: The number of events and data through HTTP data. The CMP is: Onetrust and the Privacy Regulation is: CCPA. Total HTTP Records
represents the total number of HTTP records collected in this settings. Total HTTP Chains represents the number of chains we built using
collected HTTP data. Syncing Events represents the number of chains containing the data sharing. All data are from settings including removing
cookies. We can analyze the data from both setting 1 and setting 2. There are minimal differences observed in Opt In setting. A significant
difference was noticed in the Opt Out setting when comparing settings 2 and 1, suggesting that fingerprint changes may affect the tracking.

Onetrust
Opt Out Opt In

HTTP Chains Syncing Events HTTP Records HTTP Chains Syncing Events HTTP Records
0 1549 302 50928 1178 334 43107
1 724 199 38720 754 238 39001
2 2216 395 46595 1593 401 44221
3 1588 407 46257 1618 381 49725
4 1204 368 45948 1657 449 45742
5 1084 227 42639 1663 417 50911

Table 7: The number of events and data through HTTP data. The CMP is: Onetrust and the Privacy Regulation is: GDPR. Total HTTP
Records represents the total number of HTTP records collected in this settings. Total HTTP Chains represents the number of chains we built
using collected HTTP data. Syncing Events represents the number of chains containing the data sharing. All data are from settings including
removing cookies. We can analyze the data from both setting 1 and setting 2. There are minimal differences observed in Opt In setting. A
significant difference of syncing events was noticed in the Opt Out setting when comparing settings 2 and 1, suggesting that fingerprint changes
may affect the tracking.

Onetrust
Opt Out Opt In

HTTP Chains Syncing Events HTTP Records HTTP Chains Syncing Events HTTP Records
0 400 10 38194 423 33 38587
1 400 21 37350 505 36 44067
2 455 42 38636 485 61 38783
3 474 29 39754 546 41 42426
4 708 99 42782 482 47 39095
5 516 34 41560 395 19 38807
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Table 8: The number of events and data through HTTP data. The CMP is: Cookiebot and the Privacy Regulation is: CCPA. Total HTTP Records
represents the total number of HTTP records collected in this settings. Total HTTP Chains represents the number of chains we built using
collected HTTP data. Syncing Events represents the number of chains containing the data sharing. All data are from settings including removing
cookies. We can analyze the data from both setting 1 and setting 2. There are minimal differences observed in both Opt Out and Opt In settings.

Cookiebot
Opt Out Opt In

HTTP Chains Syncing Events HTTP Records HTTP Chains Syncing Events HTTP Records
0 248 61 7934 315 104 8863
1 392 175 9197 459 125 9568
2 407 149 9249 509 154 9251
3 363 120 8981 344 94 8365
4 238 55 7727 505 141 9175
5 241 57 7664 292 131 7959

Table 9: The number of events and data through HTTP data. The CMP is: Cookiebot and the Privacy Regulation is: GDPR. Total HTTP Records
represents the total number of HTTP records collected in this settings. Total HTTP Chains represents the number of chains we built using
collected HTTP data. Syncing Events represents the number of chains containing the data sharing. All data are from settings including removing
cookies. We can analyze the data from both setting 1 and setting 2. There are minimal differences observed in both Opt Out and Opt In settings.

Cookiebot
Opt Out Opt In

HTTP Chains Syncing Events HTTP Records HTTP Chains Syncing Events HTTP Records
0 133 5 7515 128 3 7068
1 118 3 7080 118 4 7226
2 123 4 7537 119 3 7116
3 123 5 7512 118 5 7371
4 253 14 15836 223 6 14367
5 228 8 14423 229 6 15352

Table 10: The number of events and data through HTTP data. The CMP is: Didomi and the Privacy Regulation is: CCPA. Total HTTP Records
represents the total number of HTTP records collected in this settings. Total HTTP Chains represents the number of chains we built using
collected HTTP data. Syncing Events represents the number of chains containing the data sharing. All data are from settings including removing
cookies. We can analyze the data from both setting 1 and setting 2. There are minimal differences observed in both Opt Out and Opt In settings.

Didomi
Opt Out Opt In

HTTP Chains Syncing Events HTTP Records HTTP Chains Syncing Events HTTP Records
0 1954 295 136427 1718 255 130499
1 1862 235 128373 1933 267 132669
2 1554 271 130922 1858 245 125409
3 1760 234 127028 1491 244 132634
4 2329 312 139056 2279 330 134956
5 1951 226 127350 2042 305 134851
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Table 11: The number of events and data through HTTP data. The CMP is: Didomi and the Privacy Regulation is: GDPR. Total HTTP Records
represents the total number of HTTP records collected in this settings. Total HTTP Chains represents the number of chains we built using
collected HTTP data. Syncing Events represents the number of chains containing the data sharing. All data are from settings including removing
cookies. We can analyze the data from both setting 1 and setting 2. There are minimal differences observed in both Opt Out and Opt In settings.

Didomi
Opt Out Opt In

HTTP Chains Syncing Events HTTP Records HTTP Chains Syncing Events HTTP Records
0 833 31 121457 937 42 123001
1 871 31 127088 737 14 122245
2 880 37 130116 838 25 125372
3 753 19 121093 783 21 125504
4 899 38 132361 865 35 129829
5 841 46 122519 837 19 126583

Table 12: The number of events and data through HTTP data. The CMP is: Quantcast and the Privacy Regulation is: CCPA. Total HTTP
Records represents the total number of HTTP records collected in this settings. Total HTTP Chains represents the number of chains we built
using collected HTTP data. Syncing Events represents the number of chains containing the data sharing. All data are from settings including
removing cookies. We can analyze the data from both setting 1 and setting 2. There are minimal differences observed in both Opt Out and Opt
In settings.

Quantcast
Opt Out Opt In

HTTP Chains Syncing Events HTTP Records HTTP Chains Syncing Events HTTP Records
0 1862 302 71655 2252 319 72382
1 2132 346 75336 1409 192 68125
2 2050 343 71439 1674 288 70305
3 2040 362 74835 1767 299 69467
4 1751 281 68387 1740 268 67718
5 2136 343 71491 1995 287 71945

Table 13: The number of events and data through HTTP data. The CMP is: Quantcast and the Privacy Regulation is: GDPR. Total HTTP
Records represents the total number of HTTP records collected in this settings. Total HTTP Chains represents the number of chains we built
using collected HTTP data. Syncing Events represents the number of chains containing the data sharing. All data are from settings including
removing cookies. A significant difference of syncing events was noticed in both Opt Out and Opt In settings when comparing settings 2 and 1,
suggesting that fingerprint changes may affect the tracking.

Quantcast
Opt Out Opt In

HTTP Chains Syncing Events HTTP Records HTTP Chains Syncing Events HTTP Records
0 1077 42 67150 1130 44 68512
1 1150 47 70839 1095 49 65670
2 1184 97 67300 1261 66 69702
3 1033 41 65206 994 38 65513
4 1118 50 65522 980 34 63184
5 1067 28 65243 1012 30 63984
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Table 14: The number of events and data through HTTP data. The CMP is: NAI and the Privacy Regulation is: CCPA. Total HTTP Records
represents the total number of HTTP records collected in this settings. Total HTTP Chains represents the number of chains we built using
collected HTTP data. Syncing Events represents the number of chains containing the data sharing. All data are from settings including removing
cookies. We can analyze the data from both setting 1 and setting 2. There are minimal differences observed in Opt In setting. A significant
difference was noticed in the Opt Out setting when comparing settings 2 and 1, suggesting that fingerprint changes may affect the tracking.

NAI
Opt Out Opt In

HTTP Chains Syncing Events HTTP Records HTTP Chains Syncing Events HTTP Records
0 949 203 32213 484 93 26908
1 600 149 27918 913 234 30701
2 1985 414 36313 971 211 29159
3 744 241 29736 1102 296 35130
4 1459 253 32307 1083 232 30027
5 1640 394 35534 1404 313 36936

Table 15: The number of events and data through HTTP data. The CMP is: NAI and the Privacy Regulation is: GDPR. Total HTTP Records
represents the total number of HTTP records collected in this settings. Total HTTP Chains represents the number of chains we built using
collected HTTP data. Syncing Events represents the number of chains containing the data sharing. All data are from settings including removing
cookies. A significant difference was noticed in both Opt Out and Opt In settings when comparing settings 2 and 1, suggesting that fingerprint
changes may affect the tracking.

NAI
Opt Out Opt In

HTTP Chains Syncing Events HTTP Records HTTP Chains Syncing Events HTTP Records
0 153 27 26855 378 51 34869
1 159 27 28697 202 33 31542
2 371 132 30118 420 96 30925
3 255 34 34368 173 40 29926
4 168 18 25830 305 54 29436
5 152 37 25767 140 16 26178
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A.7 Cookie Restoration Results
After the cookie data comparison, we totally detected 90 cookie key
and host pairs, for example: key “acc_segment” and host “sgqcvfjvr-
.onet.pl”. Fingerprinting related cookie restoration behaviors are
found under all settings: All changes, Languages, OS, appVersion,
UserAgent, Vendor, CookieEnabled, doNotTrack, Language, Plugin,
Canvas. In UserAgent, Languages and Language settings, we not only
change the value JS API “Navigator”, but also change the value in
HTTP header. The following is the example of cookie value changed
after fingerprints are changed.
domain: google.it

key: OTZ

value:

1. 7151858_76_80_104160_76_446820(UA: chrome)

2. 7151859_76_80_104160_76_446820(UA: firefox)

In total, we documented 378 instances of cookie restoration
related to fingerprinting across 90 unique combinations of cookie
keys and host pairs across all settings. Subsequently, we conducted a
comprehensive manual inspection of all 90 cookie key and host pair
combinations. However, the results of our examination do not provide
substantial support for the assertion that these cookie restorations
are linked to fingerprinting.

Throughout our manual inspection, we observed that some values
did indeed change when we altered the browser fingerprint, while
others exhibited variations correlating with the passage of time.
Additionally, certain values appeared to be random, deriving from
an unidentified source. For identical cookie key and host pairs, we
encountered instances where the same value persisted during two
inspections with different fingerprints, as well as situations where
the same value occurred during two inspections with the same
fingerprints. Furthermore, some values incorporated fingerprinting
feature values, suggesting that alterations in browser fingerprints
influenced the cookie value. Nonetheless, these changes cannot be
unequivocally attributed to browser fingerprinting restoration.

Takeaway [Cookie Restoration]:
(1) During the data collection process for automation, we observed that certain

cookies are reinstated when fingerprints remain consistent. However, when
these fingerprints are altered, the values of these cookies either change or
they vanish.

(2) Upon manual examination, the restoration of these cookies was determined
not to be related to fingerprinting.

In light of our thorough manual inspection, we cannot definitively
assert that browser fingerprinting is employed to restore cookies.
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