
On the Security of E2EE Device Linking Protocols:
QR Sniffing Attacks and SAS Authentication Defense

Md Shahidur Rahaman
Texas A&M University

College Station, Texas, USA
mdshahidur_rahaman@tamu.edu

Nitesh Saxena
Texas A&M University

College Station, Texas, USA
nsaxena@tamu.edu

Abstract
Widely adopted end-to-end encrypted (E2EE) messaging apps, such
as WhatsApp, WeChat, and Telegram, allow the user to link a sec-
ondary device (e.g., laptop/desktop) to the primary device (mobile
phone), syncing the chats between the two devices and enabling
access across devices. The device linking process is critical because
if the attacker can compromise its security, it compromises the
E2EE security of chats/calls between the user and all their contacts.
This paper shows that current device-linking protocols have a fun-
damental problem that makes them vulnerable to eavesdropping
attacks and proposes a robust device-linking protocol based on the
notion of Short Authentication Strings (SAS) to mitigate this threat.

Our attack stems from currently deployed device linking pro-
tocols directly transferring secret cryptographic material, using
session keys that are derived by embedding it into a QR code dis-
played on the secondary device captured via the primary device. We
demonstrate two attack scenarios where the attacker can grab this
QR code to compromise device linking. The first attack scenario,
QRSniffer-Browser, exploits the secondary device registration
process in the browser, where malicious code can execute without
the user’s knowledge, enabling an attacker to mirror the attacker’s
account and potentially inject malicious messages. The second sce-
nario, QRSniffer-Prox, targets users attempting to mirror their
account on a desktop/laptop application, where an attacker within
proximity can eavesdrop on the QR code and gain unauthorized
access. To counter these vulnerabilities, we propose a SAS-based
authentication mechanism, SASLinker that requires users to val-
idate a short protocol fingerprint string on both the primary and
secondary devices during registration. Importantly, even if an at-
tacker captures the SAS by eavesdropping it, it would not help
the attacker as the SAS does not contain secret key material, only
material for authenticating keys. Therefore, breaking the scheme is
infeasible by simply eavesdropping the SAS, unlike current device
linking protocols. We show that SAS validation can be performed
by having the user copy the alphanumeric SAS code displayed on
the secondary device over to the primary device or by capturing
the QR representation of the SAS code by taking a picture. By im-
plementing this device-linking solution, messaging services can

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
WiSec 2025, June 30– July 03, 2025, Arlington, Virginia
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-XXXX-X/18/06
https://doi.org/XXXXXXX.XXXXXXX

effectively protect their users from unauthorized access and ensure
the integrity of their communications.

CCS Concepts
• Security and privacy→ Social network security and privacy.

Keywords
End-to-End Encryption (E2EE), Device Linking Security, QR Code
Vulnerabilities, Short Authentication String (SAS), WhatsApp Se-
curity

ACM Reference Format:
Md Shahidur Rahaman and Nitesh Saxena. 2018. On the Security of E2EE
Device Linking Protocols: QR Sniffing Attacks and SAS Authentication
Defense. In Proceedings of Make sure to enter the correct conference title
from your rights confirmation emai (WiSec 2025). ACM, New York, NY, USA,
12 pages. https://doi.org/XXXXXXX.XXXXXXX

1 Introduction
Communication technology’s evolution has dramatically trans-
formed how people interact and stay connected. End-to-end en-
crypted (E2EE) messaging applications have emerged as a corner-
stone of this transformation, offering real-time communication ca-
pabilities that transcend geographical boundaries [25] [17]. These
platforms have facilitated personal and professional interactions
and have become integral to the daily lives of billions of users
worldwide [19]. E2EE messaging application’s convenience, speed,
and multimedia capabilities have made them indispensable tools
in the modern digital era [23] [2]. WhatsApp, WeChat, and Tele-
gram stand out among the myriad applications available today
due to their extensive user bases and feature-rich platforms. What-
sApp alone boasts over 2 billion users globally, while WeChat and
Telegram have approximately 1.2 billion and 500 million users, re-
spectively [24] [35]. These applications provide a wide range of
functionalities, from text and voice messaging to video calls and
file sharing, making them versatile tools for communication [22]
[33] [32].

The widespread adoption of these services underscores their
profound impact on how people connect and share information.
However, the rapid proliferation of end-to-end(E2EE) communica-
tion has also brought significant security concerns. Users entrust
these platforms with sensitive personal information, from private
conversations to multimedia files and contact lists [36]. The secu-
rity and privacy of user data are paramount, as breaches can lead
to identity theft, unauthorized access to private information, and
other malicious activities [15]. Consequently, safeguarding user
data and ensuring secure communication channels are vital for
maintaining user trust and the integrity of these platforms. Security

1

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX


vulnerabilities in E applications are not merely theoretical; they
have tangible implications for millions of users worldwide.

For instance, in 2019, WhatsApp disclosed a vulnerability that
allowed spyware to be installed on users’ devices via a simple
missed call [8] [31]. These incidents highlight the pressing need
for robust security measures to protect users from threats. One of
the critical areas of concern is the linking device mechanism and
authentication method, mainly using QR codes. While QR codes
offer a convenient way to link devices, they also present potential
attack vectors [30]. In this paper, we focus on two attack scenarios
involving QR codes in WhatsApp, WeChat, and Telegram:

(1) QRSniffer-Browser: In this scenario, malicious code ex-
ecutes without the user’s knowledge, opening a browser
window with “web.whatsapp.com." The code then captures
a snapshot of the QR code and sends it to the attacker. Once
the attacker scans the QR code, they canmirror the attacker’s
WhatsApp, WeChat, or Telegram account and inject mes-
sages.

(2) QRSniffer-Prox: An attacker near the user intercepts the
QR code scanning process. When the user attempts to regis-
ter a new device using the WhatsApp desktop app, WeChat,
or Telegram, the attacker first uses a high-quality camera to
scan the QR code. This results in the attacker’s secondary
device’s application window displaying instead of the user’s
contacts.

These attack scenarios highlight severe security vulnerabilities that
could affect millions of users across these popular E2EE messaging
platforms. To address these vulnerabilities, we propose a novel
short authentication string (SAS)- based authentication method,
SASLinker, to link the secondary device and sync the account
information. Unlike traditional QR code-based protocols, our SAS-
based approach introduces a two way of verification during the
linking device process. In addition, in a traditional SAS, both parties
manually compare the authentication strings by saying the strings
aloud; however, in our proposed mechanism, we mention getting
the verification on the primary device and then confirming the
verification on the secondary device.

In this approach, we proposed two mechanisms: a short au-
thentication string pops up on the secondary device during the
linking device mechanism. The primary device will verify that
string [37], and the user gets the confirmation to accept or reject on
the secondary device. Once the user accepts it, the linking device
mechanism will be successful. Otherwise, it will reject the linking
device mechanism. In the second scenario, we embed SAS in a
QR code, and the secondary device displays that primary device.
Once scanned and confirmed the verification, the secondary device
gets the accept or reject, and once accepted, the device linking
process will be successful; otherwise, it will be rejected. Notably,
the SAS does not contain secret key material; it only authenticates
keys, making it infeasible for an attacker to compromise the pro-
cess simply by eavesdropping on the SAS. SASLinker enhances the
security of E2EE messaging applications by introducing a signifi-
cant layer of verification, thereby mitigating the risks associated
with QR code-based attacks. This study examines the implementa-
tion of SAS-based authentication across WhatsApp, WeChat, and

Telegram, evaluating its effectiveness in protecting user data and
maintaining secure communication channels.

By addressing these security challenges, we aim to contribute to
the ongoing efforts of the research community to enhance the secu-
rity and privacy of E2EE messaging applications. This study seeks
to answer critical questions: How can we improve the security of
QR code-based linking device protocol? What are the most effective
methods for preventing unauthorized access to user accounts? How
can E2EE messaging applications balance convenience and security
in their authentication processes? Through this research, we hope
to provide valuable insights and practical solutions to enhance the
security of instant messaging applications for millions of users
worldwide.

Our Contributions: Our study elucidates the following contribu-
tions:

(1) We comprehensively analyze the existing linking device pro-
cesses used by popular instant messaging applications such
as WhatsApp, WeChat, and Telegram, identifying strengths,
weaknesses, and potential security vulnerabilities related to
QR code-based authentication.

(2) We demonstrate two attack scenarios that exploit these vul-
nerabilities: the QRSniffer-Browser, where malicious code
captures and transmits a QR code to an attacker, and the
QRSniffer-Prox, where an attacker intercepts the QR code
scanning process to gain unauthorized access.

(3) We propose and implement the prototype of SASLinker to
address these security issues. The SAS method displays a
short authentication string on the secondary device during
registration, which the usermust enter on the primary device,
adding an extra layer of security to prevent unauthorized
access.

Through these contributions, our study aims to enhance the security
of instant messaging applications by mitigating the risks associated
with the current linking device mechanism.

2 Background
Understanding the intricacies of current secondary device linking
protocols in widely adopted end-to-end encrypted (E2EE) mes-
saging apps is essential to appreciate the significance of our pro-
posed SAS-based device linking solution. This section provides an
overview of these protocols and a review of Short Authentication
String (SAS) authentication mechanisms.

2.1 Current Linking Device and Syncing
Protocols for E2EE messaging apps

2.1.1 WhatsApp: WhatsApp employs a robust end-to-end encryp-
tion system based on the Signal Protocol, ensuring that third parties,
including WhatsApp, cannot access plaintext messages or calls [41]
[28]. The encryption keys are ephemeral and unique to each device,
providing additional security even if a device’s keys are compro-
mised. During the linking device mechanism, a WhatsApp client
transmits its public Identity Key, public Signed Pre Key, and a batch
of public One-Time pre-keys to the server, which stores these keys
associated with the user’s identifier [14]. The primary device must
create an Account Signature by signing the new device’s public

2



Identity Key to link a secondary device. In contrast, the secondary
device creates a Device Signature by signing the primary device’s
public Identity Key. This process involves scanning a QR code
displayed on the secondary device using the primary device. The
secondary device generates and displays a QR code containing its
public Identity Key and a Linking Secret Key. The primary device
scans the QR code, saves the secondary device’s Identity Key, and
generates necessary signatures and metadata. The server facilitates
the secure transfer of linking data, ensuring both devices can es-
tablish end-to-end encrypted sessions. Upon linking a secondary
device, the primary device end-to-end encrypts a copy of recent
chat messages and transmits these to the secondary device [13].
This ensures that all messages remain encrypted during the sync-
ing process, maintaining the confidentiality and integrity of the
communication.

2.1.2 WeChat and Telegram: While the technical details ofWeChat
and Telegram’s device linking protocols differ fromWhatsApp, they
share standard features, such as QR codes for linking secondary
devices and end-to-end encryption to protect user communica-
tions. However, in the case of Telegram Login_Token, which is
encoded using base64url, it is embedded in a 𝑡𝑔 : //𝑙𝑜𝑔𝑖𝑛?𝑡𝑜𝑘𝑒𝑛 =

𝑏𝑎𝑠𝑒64𝑒𝑛𝑐𝑜𝑑𝑒𝑑𝑡𝑜𝑘𝑒𝑛 URL and shown to the user as a QR code. In
the case of WeChat, they share access_token, a base64url string
encoded into the QR Code. Both platforms face similar vulnerabil-
ities in their linking device processes, particularly regarding the
exposure of QR codes to potential attackers [34] [39].

2.2 Review of SAS Authentication Protocols
Short Authentication String (SAS) protocols offer a promising so-
lution to enhance the security of device-linking processes. SAS is
a method to authenticate communication channels by comparing
short, human-readable strings. This approach is commonly uti-
lized in secure voice communication protocols, such as the ZRTP
protocol in VoIP applications.
• Principle of SAS: SAS-based protocols generate a short string
derived from the cryptographic material exchanged during
the initial key agreement phase. This string is then displayed
to both parties, who can verbally compare and verify it. If
the strings match, the parties can be confident that their
communication is secure and free from man-in-the-middle
attacks.
• Current Implementation: Traditional entity authentication
mechanisms, like those used in Signal (e.g., safety numbers),
rely on long-term keys, which may not be secure if those
keys are compromised [16]. The Signal protocol, widely used
in applications likeWhatsApp and FacebookMessenger, uses
a combination of X3DH (Extended Triple Diffie-Hellman) for
key agreement and the double ratchet algorithm for main-
taining forward secrecy and post-compromise security. Sig-
nal’s current entity authentication mechanism (safety num-
bers) relies on long-term keys, making them vulnerable if
compromised. SAS-based authentication offers a robust al-
ternative by allowing for shorter, more frequent out-of-band
verifications.
• Security Benefits: The primary advantage of SAS-based au-
thentication is that it does not transmit secret cryptographic

material [27]. Instead, it uses the SAS for key verification,
making it resistant to eavesdropping attacks. By adding this
layer of verification, the protocol significantly enhances the
security of the device-linking process without compromising
user convenience [16].

In summary, while current linking device protocols in E2EE mes-
saging apps like WhatsApp, WeChat, and Telegram provide robust
security features, they are vulnerable to specific attack vectors
involving QR code interception. Our proposed SAS-based authenti-
cation protocol addresses these vulnerabilities by introducing an
added verification step that enhances security and maintains the
integrity of user communications.

3 QRSniffer Attack Scenarios
This section explores the technical details of QRSniffer-Browser
and QRSniffer-Prox, which exploit vulnerabilities in popular in-
stant messaging application’s QR code-based linking device pro-
cesses. We conducted the experiment in a real WhatsApp account.
These scenarios demonstrate the potential security risks users may
face and highlight the need for improved authentication methods.

www.xyz.com

Remote Code Execute at User’s 
Secondary Device

Browser opens with 
“web.whatsapp.com” 

Snapshot taken and sends 
to Attacker

Attacker Scans the 
QR Code

Attacker WhatsApp Account Displays 
and a random message injected

Figure 1: QRSniffer-Browser Attack

3.1 QRSniffer-Browser
Feasibility and Testing: The QRSniffer-Browser attack demon-
strates the feasibility of a Remote Code Execution (RCE) exploit that
compromises a user’s instant messaging account, specifically What-
sApp, through user-space attacks. This attack bypasses the need
for root access or compromises the kernel, leveraging user-space
vulnerabilities instead. The testing process involved developing and
executingmalicious code designed to run silently in the background,
automating the browser to capture and transmit QR codes.

Attack Scenario: In this scenario, the attacker begins by exe-
cuting malicious code on the target device, often delivered through
phishing emails, malicious attachments, or exploiting known soft-
ware vulnerabilities. The code runs silently, opens the Chrome
browser, and navigates to the WhatsApp Web login page. It cap-
tures the QR code displayed on the page using automation tools
like Selenium or Puppeteer, sending the screenshot to the attacker’s

3

tg://login?token=base64encodedtoken
tg://login?token=base64encodedtoken


server. The attacker then scans the QR code on their device, mirror-
ing the attacker’s WhatsApp account into the victim’s secondary
device and injecting a message to a random contact. Figure 1 depicts
the detailed attack scenario.

Practical Settings and Preferred Tools: The practical settings
for the QRSniffer-Browser attack involve two primary devices:
the victim’s device and the attacker’s device. We select a device with
a stable internet connection as the victim’s device. The malicious
code is executed on the victim’s device, often via phishing emails,
malicious attachments, or clicking a malicious web link. For our
experiment, we sent a link from a device (referred to as the attacker’s
device) to the victim’s device. When the user clicks the link, the
victim’s device opens theWhatsAppWeb link. The attacker’s device
receives and scans the captured QR code, mirroring the attacker’s
WhatsApp account. Preferred tools for this attack include Selenium
WebDriver, which automates browser actions such as opening the
WhatsApp Web page and capturing the QR code. Secure HTTP
requests are used to avoid detection by network monitoring tools
and ensure the QR code is transmitted securely.

Implementation Detail: The attack begins with setting up and
configuring Selenium WebDriver for Chrome to automate the pro-
cess on the victim’s device. The browser navigates to theWhatsApp
Web login page, waiting for the QR code to appear and ensuring
the page is fully loaded. Upon displaying the QR code, automation
scripts capture a screenshot, which is transmitted to the attacker’s
server using secure HTTP requests. The attacker then scans the QR
code, mirroring their WhatsApp account onto the victim’s device.

To propagate the attack, the automation identifies and selects
a random contact from the contact list, accesses the chat window,
and sends a pre-defined malicious message. The automation en-
sures seamless execution, highlighting the ease with which such
vulnerabilities can be exploited. This process demonstrates the ef-
fectiveness of remote code execution attacks through automation.
The complete flow of the attack is illustrated in Figure 2, showcas-
ing how critical vulnerabilities in device linking protocols can be
leveraged maliciously.

Attack Demonstration: We conducted a demonstration of the
designed attack at: https://sites.google.com/view/qr-sniffer-attack-
demo/home

Consequences of QRSniffer-BrowserAttack :As demonstrated
above, the attacker’s ability to manipulate the victim’s text mes-
sages is a serious concern. By mirroring their WhatsApp account
onto the victim’s device, the attacker gains more accessibility to
the victim’s messages, potentially showing obscene messages or
altering the content.

It is crucial to understand the potential harm that an attacker
can cause. In Figure 6, we show the type of obscene messages
the attacker can send through the victim’s device. As the victim
does not know whether the secondary device contains the actual
account they linked, the victim might think they are sending text
messages to the contacts. In addition, text messages are written
and sent automatically, making it easier to believe that someone
is taking over the victim’s account and asking for ransom money,
as depicted in Figure 4. The attacker’s motivation likely revolves
around exploiting the victim’s device as a platform for spreading
malicious content or causing confusion and distress. By mirroring
their WhatsApp account onto the victim’s device, the attacker can

Figure 2: Flowchart of the malicious code

send sexually explicit or spammessages from their account but from
the victim’s device. This could lead to several damaging outcomes
for the victim. The sexually explicit messages or links provided in
the message depicted in Figure 3 might be used by the attacker
to shock or embarrass the victim by making it appear as though
their device is responsible for sending inappropriate content. In
the case of spam messages depicted in Figure 5, the attacker could
be attempting to use the victim’s device as a relay to distribute
malicious links or spam links providing false offers to their contacts,
thereby avoiding detection or filtering systems that might block
such content if sent directly from the attacker’s device.

Another scenario describes a potential case where the attacker’s
account gets mirrored into the victim’s secondary device. This case
can easily trick the victim as the victim links their device for the
first time by adding the contact. Once the user adds a contact to the
secondary device, they add that contact to the attacker’s account, a
severe violation of the End-to-End encryption scheme. In Figure 9,
we can observe an empty contact list of the attacker’s account, and
the victim adds a contact to that chat windowwithout knowing they
are adding that to the attacker’s account. Although the user account
has not been compromised, the fact that their device is being used to
mirror and propagate these harmful messages can lead to significant
reputational damage, as the victimmay be complicit in these actions.
Additionally, the victim might experience a loss of trust in their
digital security, leading to increased anxiety about their data and
communications. This scenario highlights the sophisticated nature

4

https://sites.google.com/view/qr-sniffer-attack-demo/home
https://sites.google.com/view/qr-sniffer-attack-demo/home


Figure 3: Sexually Explicit Message
Figure 4: Harassment or Threatening
Message

Figure 5: Inappropriate or Spam Mes-
sages

Figure 6: Obscene Messages Sent from the Victim’s Secondary Device for WhatsApp

Figure 7: Device Linked with No Contact
Figure 8: Victim Adds Contact to the At-
tacker’s Account

Figure 9: Inducing a Victim to Unknowingly Add a Malicious Contact

of modern cyber threats and the importance of vigilance and robust
security practices to protect against such attacks.

3.2 QRSniffer-Prox
QRSniffer-Prox exploits the physical proximity of the attacker
to the victim during the linking device process of the desktop ap-
plication. This attack allows an adversary to capture and use the
QR code displayed on the victim’s screen; thereby, the victim’s
secondary device gains access to the attacker’s malicious account.
For our experiment, we used WhatsApp and a device where the

desktop WhatsApp application was already installed, referred to as
the victim’s device.

Feasibility and Testing: To assess the feasibility of this attack,
we conducted tests using various camera setups. Our tests found
that the optimal distance to capture the QR code with a high-quality
smartphone camera is approximately 8 feet 5 inches. Using a 15x
zoom ensures the QR code is clear and readable. This configuration
allows for precise and effective QR code capture without alerting
the target. Using higher-quality cameras with advanced lenses
can significantly enhance the effectiveness of this attack. Better
cameras with superior optical zoom capabilities can capture the
QR code from even greater distances while maintaining clarity and

5



readability. For instance, a camera with a 30x or higher optical zoom
could capture the QR code from distances exceeding 15 feet. This
extended range increases the attacker’s flexibility in positioning
the camera, making it more challenging for the target to detect the
surveillance.

Attack Scenario: The attacker positions themselves close to
the victim, such as in a public place or shared office environment,
where they can observe the victim attempting to register a new
device using theWhatsApp desktop app,WeChat, or Telegram. This
proximity allows the attacker to view the victim’s device screen
during the linking device process. The attacker discreetly uses the
camera setup described above to capture the QR code.

As the victim attempts to link their device, the attacker screens
the camera to scan the QR code before the victim completes regis-
tration. This precise timing and use of advanced camera equipment
ensure the clarity and accuracy of the captured QR code. The at-
tacker’s account may initially show an empty contact list on the
victim’s secondary device. However, once the QR code is scanned,
the attacker’s messaging service account mirrors into the victim’s
device, granting access to read, send, and access the contact list. To
avoid detection, the attacker can manipulate the IM application’s
interface on their device to display an empty contacts list, making it
appear that the user is accessing their account and adding a contact.

Practical Settings: The practicality of this attack is particularly
high in shared office settings or public places where people might
link their devices. For example, colleagues might work nearby in
an open office environment, making it easier for an attacker to
position a camera discreetly. Similarly, individuals often link their
devices while unaware of their surroundings in public places like
cafes or libraries, providing an opportunity for attackers [1].

Implementation Details: Using a smartphone camera posi-
tioned approximately 8 feet 5 inches away with 15x zoom, we
demonstrated an attack exploiting the WhatsApp desktop linking
process. Using an iPhone 13 Pro Max with a 13mm f/1.8-aperture
lens, PDAF, and 2cm macro, the QR code was effectively captured
in a closed setting. Once scanned, the attacker gained full access to
the victim’s account. This highlights the need for stronger security
measures to ensure only authorized devices can link. Advanced
cameras with higher optical zoom and superior lenses could en-
hance the attack, capturing QR codes from greater distances with
improved clarity and stealth.

The attack scenario is depicted in Figure 10. When using the
desktop WhatsApp application for the first time on an operating
system, the user needs to scan the QR code displayed on their device.
During this process, an attacker can position a camera up to 8.5
feet away, utilizing a 15x zoom to scan the QR code before the user
completes their scan.

The attacker exploits the device-linking process, which typically
takes 12 to 15 seconds, as the user navigates to the "Linked Devices"
option on their primary device and activates the camera to scan
the QR code. During this window, the attacker captures the QR
code, causing an empty contact list and chatbox to appear on the
user’s device. The attacker deceives the user into believing they are
interacting with their account. When the user adds a new contact,
the attacker gains access to the contact information, compromising
security.

Consequences of Device Linking by an Attacker: As a con-
sequence of this attack, the victim, deceived by the empty contact
list displayed during the initial linking process, unknowingly adds
new contact information to the attacker’s account. This action com-
promises the end-to-end encryption scheme, exposing sensitive
user data and undermining the platform’s security integrity.

4 SASLinker: Our Proposed Defense
4.1 Overview
The Short Authentication String (SAS)–based authenticationmethod
[16] enhances the device’s linking process’s security for E2EE mes-
saging apps like WhatsApp, WeChat, and Telegram. This method
introduces a robust verification step that ensures only legitimate
users can complete the registration of a secondary device, thereby
protecting against unauthorized access.

We propose SASLinker a solution that securely links secondary
devices to primary devices without directly exchanging any shared
keys or identities. This mechanism relies on a combination of secure
commitment schemes and cryptographic techniques to verify the
devices’ authenticity.

Our proposed defense mechanism uses the Short Authentication
Strings (SAS) approach to enable secure communication over an
insecure channel via a narrowband channel for SAS authentication.
The process starts when the sender (Alice) creates a commitment
value by combining a message and a random string. Alice sends
this commitment to the recipient (Bob) over the insecure channel.
Bob then generates and sends a random string to Alice, who re-
veals her random string to open the commitment. Bob verifies the
commitment’s integrity, and both parties calculate the SAS as the
XOR of their random strings. The SAS is sent through the secure
narrowband channel, ensuring integrity and authenticity even in
an insecure communication environment.

The SAS mechanism resists man-in-the-middle (MitM) attacks,
as any interference alters the SAS, making such attacks easily de-
tectable. Cryptographic commitment schemes ensure that once a
value is committed, it cannot be modified without detection. This
makes SAS reliable when public key infrastructures are unavailable
or compromised, such as peer-to-peer networks or secure device
pairing for Bluetooth, SSH, and PGP.

When a user initiates linking a secondary device (SD) to their
primary device (PD), the process starts with the SD generating a
Diffie-Hellman (DH) key pair and a random value [11]. The SD
computes a commitment based on this information and sends the
commitment and its DH public key to the server. The server then
forwards these to the PD. Upon receiving them, the PD generates
its own DH key pair and a random value, computes its commitment,
and sends the commitment and DH public key back to the server,
which forwards them to the SD. Both devices hold each other’s
obligations and DH public keys at this stage without revealing the
underlying random values.

The PD and SD exchange their random values through the server.
This exchange is crucial for the verification step, ensuring both
devices have all the necessary information. Each device then ver-
ifies the commitment received from the other device using the
exchanged random values. This step ensures that the commitments
are authentic and have not been tampered with.

6



User installed Desktop 
WhatsApp App

User tries to scan the QR Code

Attacker placed the camera and 
scanned the QR Code

Empty Contact List of the 
Attacker

Figure 10: QRSniffer-Prox Attack

After successful verification, both devices independently com-
pute a shared key using the DH public and private keys. In this
process, no keys are transferred between each other. They then
compute a Short Authentication String (SAS) using the shared key
and the exchanged random values. The SAS is a unique string de-
rived from these values. The SAS is computed by taking the first
16 bytes of the shared secret, converting them to an integer, and
then performing bitwise XOR operations with two random values
(also converted to integers). The result is converted to a hexadec-
imal string. This process ensures a unique and verifiable SAS for
secure device linking. There are potentially two ways the SAS can
be handled:

(1) The alphanumeric SAS can be displayed on the secondary
device, and the PD user needs to enter the displayed alphanu-
meric SAS. If the SAS matches the generated SAS on the PD,
it sends the confirmation to the SD, and the user can accept
or reject the confirmation displayed on the SD.

(2) The SAS is embedded into a QR code displayed on the SD,
and the PD scans the QR code displayed on the SD. Once the
SAS is verified on the PD, the PD sends the confirmation to
accept or reject it to the secondary device.

If the user accepts it, the linking device mechanism is successful;
otherwise, it will reject the linking procedure. This step completes
the linking process, ensuring the SD is securely linked to the PD.
By leveraging the SAS-based approach, this method ensures secure
and user-friendly linking of secondary devices, mitigating the risk
of unauthorized access by requiring physical presence and direct
interaction between the devices.

4.2 Detailed Explanation of How SASLinker
Addresses Specific Vulnerabilities

The proposed SAS-based authentication method, SASLinker en-
hances the security of the device linking process for instant mes-
saging applications, effectively mitigating the attacks we discussed.
Here’s how the algorithm addresses these specific attacks:

The QRSniffer-Browser Attack: In this attack scenario, ma-
licious code executes without the user’s knowledge, opening a
browser window with "web.whatsapp.com." The code captures a
snapshot of the QR code and sends it to the attacker, allowing them
to mirror the victim’s account.

Mitigation by SASLinker:

(1) Commitment and Verification: The initial steps of generating
and exchanging commitments between the primary device
(PD) and secondary device (SD) ensure that both devices have
cryptographic information that needs to be verified. Even
if the attacker captures the QR code or the alphanumeric
SAS, they cannot generate the valid commitments or the
corresponding random values required for the verification
process.

(2) SAS Computation: Both devices compute the SAS indepen-
dently using their verified cryptographic information. The
SD displays a QR code containing the SAS where the attacker
cannot replicate the process since the SAS is derived from
secret random values never transmitted directly.

(3) Terminating the Malicious Code Execution: The two-way
confirmation process significantly hinders an attacker from
interfering with the acceptance or rejection of the SAS. Since
the secondary device must receive and process the confirma-
tion to accept or reject the SAS, an attacker cannot manipu-
late this step using malicious code or through their primary
device. This ensures that only the legitimate user can com-
plete the linking process.

7



The QRSniffer-Prox Attack: In this attack scenario, an at-
tacker intercepts the QR code scanning process by using a high-
quality camera to scan the QR code before the legitimate user,
resulting in the attacker’s IM window displaying instead of the
user’s contacts.

Mitigation by SASLinker:

(1) Commitment and Verification: Similar to the previous attack,
the commitment generation and verification steps ensure
that only devices with matching commitments and corre-
sponding random values can successfully compute the SAS.
The attacker cannot obtain these values merely by capturing
the QR code or the alphanumeric SAS.

(2) SAS Computation: The SAS is computed based on verified
cryptographic information, ensuring its uniqueness and in-
tegrity. The SD displays a QR code containing the SAS only
after these values have been securely verified. An attacker
cannot reproduce or use the captured QR code or the value
displayed on the SD. Since no key is shared during this proce-
dure, the attacker cannot make any progress with the attack.

(3) Physical Presence Requirement: The QR code contains the
SAS, which the PD scans. Suppose an attacker captures the
QR code or the SAS displays on the SD with a high-quality
camera and attempts to use it. In that case, they will not have
the necessary cryptographic values to generate a valid SAS
on their device. Additionally, the legitimate user will notice
that the secondary device will get the confirmation about
accepting or rejecting.

(4) Secure Environment: The linking process requires physical
presence and direct interaction between the SD and PD. This
requirement makes it significantly harder for an attacker to
intercept the QR code without being detected.

By leveraging the SAS-based approach and commitment ver-
ification, SASLinker provides a robust defense against these QR
code-based attacks. The mechanism ensures that even if an at-
tacker captures the SAS or the QR code, they cannot complete
the device-linking process without possessing the correct cryp-
tographic information and physical access to both devices. This
method significantly reduces the risk of unauthorized access and
ensures the security of the device linking mechanism.

4.3 Authentication Methods Comparison
Password-Based Authentication: Password-based authentica-
tion relies on users creating and remembering passwords stored
in the hashed form on servers and compared during login. This
method is vulnerable to brute force attacks, dictionary attacks, and
phishing, especially when users create weak or reused passwords
[26]. Users often need help creating and remembering strong pass-
words, leading to insecure practices like writing them down or
reusing them across services. In contrast, the SAS-based method
(SASLinker) uses cryptographic techniques like commitments and
Diffie-Hellman key exchange, avoiding the need to store or trans-
mit passwords. This approach enhances security by ensuring the
process cannot be tampered with and improves usability by involv-
ing simple actions like scanning a QR code or entering a Short
Authentication String (SAS).

Biometric Authentication: Biometric authentication relies on
unique physical traits, such as fingerprints, facial recognition, or iris
scans, stored securely on devices or sometimes on servers. During
authentication, captured biometric data is processed and compared
to the stored data. While it provides high security, biometric data
can still be spoofed or stolen if not adequately protected. Key han-
dling in biometric systems involves securely storing biometric data
on devices or servers, requiring robust protection against unau-
thorized access [5]. Biometric templates must be encrypted and
securely managed to prevent leaks and misuse. SASLinker avoids
storing sensitive biometric data using DH key pairs and commit-
ments, ensuring robust security against tampering and offering a
user-friendly linking process throughQR codes or SAS. Thismethod
avoids the privacy concerns associated with biometric data storage.
Key handling in SASLinker focuses on using DH key pairs and
commitments, preventing the need to store sensitive biometric data
and emphasizing cryptographic security without the complexities
of managing biometric templates.

Public Key Infrastructure (PKI): Public Key Infrastructure
(PKI) employs a pair of cryptographic keys for secure communica-
tion and user authentication, involving the secure management of
private keys on devices and public keys on a certificate authority
(CA) server. During authentication, a challenge-response mecha-
nism is used, where the user signs a challenge with their private key,
and the server verifies the signature using the public key. While PKI
provides a high level of security through asymmetric encryption,
managing and distributing certificates can be complex and cumber-
some, requiring technical knowledge [7]. SASLinker simplifies key
management by using DH key pairs and commitments, offering
significant security without the complexity of certificate manage-
ment. It provides a more user-friendly approach using QR codes or
SAS for device linking, making it accessible to non-technical users
while maintaining strong security.

5 SASLinker: Design and Implementation
This section provides a detailed implementation of the Short Au-
thentication String (SAS)–based authentication method for enhanc-
ing the security of linking device processes in End applications
such as WhatsApp, WeChat, and Telegram. The implementation
encompasses the SAS generation, display, and verification during
the linking device process.

5.1 System Architecture
The system architecture for SAS-based authentication involves
several key components, including the IM application server and
primary and secondary devices. The interaction between these
components is crucial for ensuring a secure linking device process.
Figure 11 illustrates the overall architecture and interaction flow.

5.2 Implementation Detail
(1) Generate and Commit Keys (SD): The Secondary Device

(SD) generates a Diffie-Hellman (DH) key pair (𝑑𝑆𝐷 , 𝑔𝑑𝑆𝐷 )
and a random value𝑅𝑆𝐷 . It computes the commitment𝐶𝑆𝐷 =

commit(𝑅𝑆𝐷 , 𝑔𝑑𝑆𝐷 ) and sends 𝐶𝑆𝐷 and 𝑔𝑑𝑆𝐷 to the server.
(2) Generate and Commit Keys (PD): The Primary Device

(PD) generates its own DH key pair (𝑑𝑃𝐷 , 𝑔𝑑𝑃𝐷 ) and random
8



Verify 
Commitment

Generate
Commitment

Compute 
SAS

Display QR 
Code

Forward 
Data

Forward commitmentCompute 
SAS

Generate QR 
Code

Generate
Commitment

Verify 
Commitment

Compute 
SAS

Scan QR 
Code

Verify SAS

Send Commitment Forward commitment

Compute SAS

Get the 
SAS

User

Secondary Device

Primary Device

Server

Display SAS

Enter the 
SAS

}

Accept or 
Reject

Linking Device 
Successful

If Accept

Confirmation about Verification

Figure 11: System Architecture for SASLinker

value 𝑅𝑃𝐷 . It computes the commitment 𝐶𝑃𝐷 = commit
(𝑅𝑃𝐷 , 𝑔𝑑𝑃𝐷 ).

(3) Exchange Commitments and Public Keys: The server
forwards 𝐶𝑆𝐷 and 𝑔𝑑𝑆𝐷 to the PD, and 𝐶𝑃𝐷 and 𝑔𝑑𝑃𝐷 to the
SD. The server acts as an intermediary that facilitates the
forwarding process.

(4) Exchange Random Values: The PD and SD exchange 𝑅𝑃𝐷
and 𝑅𝑆𝐷 via the server.

(5) Verify Commitments: The PD verifies𝐶𝑆𝐷 using 𝑅𝑆𝐷 and
𝑔𝑑𝑆𝐷 , and the SD verifies 𝐶𝑃𝐷 using 𝑅𝑃𝐷 and 𝑔𝑑𝑃𝐷 .

(6) Compute Shared Keys: The PD computes the shared key
𝐾𝑃𝐷 = (𝑔𝑑𝑆𝐷 )𝑑𝑃𝐷 , and the SD computes 𝐾𝑆𝐷 = (𝑔𝑑𝑃𝐷 )𝑑𝑆𝐷 .

(7) Compute and Verify SAS: Both devices compute the Short
Authentication String (SAS) using 𝐾𝑃𝐷 , 𝑅𝑃𝐷 , and 𝑅𝑆𝐷 . The
SD displays the SAS as either a QR code or a string. The
PD scans or manually enters the SAS, verifies it, and sends
a confirmation to the SD. If the SAS matches, the SD user
accepts the confirmation to complete the linking mechanism;
otherwise, it fails.

The detailed procedures and algorithms for implementing the
SASLinker mechanism, including the SAS-Based Device Linking
Protocol and SAS computation, are provided in the Appendix. These
include the step-by-step generation, exchange, and verification
of cryptographic keys and calculating the Short Authentication
String (SAS), ensuring secure device linking in IM applications.
In addition, the Appendix illustrates the overall implementation
details, highlighting how themechanismmitigates potential attacks,
such as intercepting QR codes, while maintaining the integrity of
the linking process.

6 Discussion
The research conducted in this paper aimed to address significant
vulnerabilities in the device-linking protocols of widely used end-
to-end encrypted (E2EE) messaging applications like WhatsApp,

WeChat, and Telegram. The study proposed and evaluated a SAS-
based authentication mechanism, SASLinker, to mitigate the risks
posed by QR code-based attacks, specifically QRSniffer-Browser
and QRSniffer-Prox.

The process involved a detailed analysis of the current linking
protocols and identifying their weaknesses, particularly the reliance
on QR codes for transmitting critical cryptographic material. The
introduction of SASLinker sought to overcome these vulnerabilities
by incorporating a short authentication string (SAS) into the device
linking process, adding a layer of security.

We evaluate the effectiveness of SASLinker in addressing the
questions posed in the introduction:

Improving the Security of QR Code-based Linking Device
Protocol: SASLinker introduces a robust mechanism that signifi-
cantly enhances the security of the linking device process. Requiring
users to validate a short authentication string ensures that even if
an attacker captures the QR code, they cannot proceed without the
SAS, as no secondary device identification is added to the QR code.
This method effectively mitigates the risk of unauthorized access
through QR code interception.

Preventing Unauthorized Access to User Accounts: The
SAS-based approach requires physical presence and direct interac-
tion between the primary and secondary devices, making it difficult
for attackers to execute QRSniffer attacks. The commitment and
verification steps ensure that only legitimate devices of the user
can complete the linking process, thereby preventing unauthorized
access.

Balancing Convenience and Security: While adding an extra
step to the authentication process, SASLinker maintains user con-
venience using a straightforward copying alphanumeric SAS code
or QR code scanning method and SAS verification. This approach
balances between enhancing security and preserving the ease of
use users expect from E2EE messaging applications.

Overall, the proposed SASLinkermechanism addresses the iden-
tified vulnerabilities effectively and provides a practical solution

9



for improving the security of E2EE messaging applications. The
study’s findings contribute to the ongoing efforts to enhance the
protection and privacy of user data in the digital communication
landscape.

7 Related Work
Recent research has significantly advanced our understanding of
remote code execution (RCE) vulnerabilities and their impact on
device security. Wichelmann et al. [40] investigated the vulner-
abilities in Signal’s multi-device protocol, Sesame, which allows
attackers to register a malicious device and compromise future
communications. It revealed that the current implementation does
not guarantee post-compromise security, as attackers can stealthily
add devices, gaining unrestricted access to all future communi-
cations and impersonating the victim. Campion et al. propose a
new protocol for secure multi-device communication based on the
Signal protocol, addressing the limitations of existing solutions
like Sesame. The authors introduce a Ratcheted Dynamic Multi-
cast (RDM) protocol to securely synchronize keys across multiple
devices without revealing the device count or identity, enhancing
privacy and efficiency [12]. Despite using advanced encryption,
Bahramal et al. [9] and Bogos et al.[10] demonstrate that popu-
lar Instant Messaging (IM) applications like Telegram, Signal, and
WhatsApp are vulnerable to traffic analysis attacks.

Isobe et al. [20] identify vulnerabilities in LINE’s Letter Seal-
ing E2EE scheme, allowing forgery and impersonation attacks by
an end-to-end adversary. They propose countermeasures to en-
hance security, which LINE Corporation plans to implement. Jain
et al. [21] identify security issues in a Signal-based messaging app,
including session hijacking and media jacking. The authors use
STRIDE threat modeling and report their findings to improve the
app’s security. Hindocha and Chien [18] discuss various malicious
threats to instant messaging clients, including backdoor Trojan
horses that provide unauthorized remote access to hackers. Their
study on vulnerabilities and blended threats in IM applications re-
veals how they can propagate rapidly through instant messaging
networks, often exploiting weak spots in the client software to gain
control over devices. Their findings emphasized the need for robust
defenses against cross-context execution (Xrce) attacks, which can
exploit these vulnerabilities to run arbitrary executables on victim
devices. These studies collectively provide valuable insights into
the security challenges and solutions for defending against remote
code execution attacks.

Understanding the nuances of QR code security has become
increasingly critical in the face of sophisticated threats like the
Proximity QR Code Scanning Attack. Wahsheh and Al-Zahrani
[38] delved into the intricacies of detecting malicious URLs em-
bedded in QR codes using advanced computational intelligence
models, including fuzzy logic and multilayer perceptron artificial
neural networks (MLP-ANN). Their research underscores the in-
herent vulnerabilities in QR code generation and the importance
of real-time detection mechanisms to thwart unauthorized access
attempts via QR codes. Similarly, Sahay et al. [30] investigated the
security challenges in SaaS environments, such as SQL injection
and collision attacks, stressing the necessity of secure QR code
generation and the application of machine learning techniques to

identify and mitigate malicious activities. Their work highlights the
critical role of robust security practices in preventing exploitation
through QR codes.

Furthermore, Al-Zahrani et al. [4] presented a secure artificial
intelligence system to detect malicious QR codes, employing vari-
ous AI models to identify harmful links. This research emphasizes
the need for sophisticated detection methods to safeguard against
advanced attacks like the Proximity QR Code Scanning Attack,
where attackers intercept and misuse QR codes to access sensitive
user information. These studies collectively provide a comprehen-
sive foundation for enhancing QR code security and developing
defenses against proximity-based interception attacks.

Alatawi and Saxena [6] analyzed end-to-end encryption (E2EE)
and authentication ceremonies in secure messaging systems, iden-
tifying significant vulnerabilities in existing E2EE apps, especially
against man-in-the-middle (MitM) attacks. Their study underscores
the importance of robust authentication protocols to prevent unau-
thorized access and ensure secure communications. Similarly, Ro-
drigues et al. [29] explored hardware-based cryptography and au-
thentication for securing instant messages, emphasizing the critical
need for robust encryption and secure device authentication meth-
ods to protect against remote code execution and message injection
attacks. Ahn et al. [3] proposed a unified framework for end-user
authentication protocols in Feature-as-a-Service models, highlight-
ing the necessity of standardized authentication methods to secure
user interactions against sophisticated attacks involving QR code
vulnerabilities. Building on these insights, we propose a Short Au-
thentication String (SAS)-based linking device process to address
these vulnerabilities. This method displays a short authentication
string on the secondary device during registration, which the user
enters on the primary device. This dual-device verification ensures
secure authentication and registration, effectively mitigating the
risks associated with remote code execution and QR code scanning
attacks.

8 Conclusion
The research conducted in this paper addresses critical vulnerabili-
ties in the device-linking protocols of widely adopted end-to-end en-
crypted (E2EE) messaging applications such as WhatsApp, WeChat,
and Telegram. The study highlights the inherent risks of current
QR code-based authentication methods, demonstrating how these
vulnerabilities can be exploited through QRSniffer-Browserand
QRSniffer-Proxattacks.

We introduced SASLinker a Short Authentication String (SAS)-
based authentication mechanism that mitigates these threats and
enhances security by requiring users to validate an SAS during the
linking mechanism of a secondary device. This prevents unautho-
rized access even if a QR code is intercepted, offering a practical solu-
tion that maintains user convenience while significantly improving
security through direct interaction and verification steps. While
adding steps to the authentication process, SASLinker maintains
user convenience through simple QR code scanning or alphanu-
meric SAS verification, balancing the need for enhanced security
with ease of use.

Our study provides a comprehensive analysis of existing proto-
cols, demonstrates the vulnerabilities, and presents the SASLinker

10



solution, which significantly enhances the security of device-linking
processes in E2EE messaging apps. By addressing these challenges,
SASLinker ensures the privacy and security of millions of users
worldwide, contributing valuable insights and solutions to the re-
search community.

References
[1] Mohamad Abdulkader. 2023. Why do people use public Wi-Fi?: An investigation

of risk-taking behaviour and factors lead to decisions.
[2] Asmara Afzal, Mehdi Hussain, Shahzad Saleem, M Khuram Shahzad, Anthony TS

Ho, and Ki-Hyun Jung. 2021. Encrypted network traffic analysis of secure instant
messaging application: A case study of signal messenger app. Applied Sciences
11, 17 (2021), 7789.

[3] Jaehyung Ahn, Junhong Min, Hyung Tae Lee, and Jeongyeup Paek. 2023. Uni-
fied Framework for End-User Authentication Protocol in Feature-as-a-Service
Models. In 2023 14th International Conference on Information and Communication
Technology Convergence (ICTC). IEEE, 539–542.

[4] Mohammed S Al-Zahrani, Heider AM Wahsheh, and Fawaz W Alsaade. 2021.
Secure real-time artificial intelligence system against malicious QR code links.
Security and Communication Networks 2021 (2021), 1–11.

[5] Abdulmonam Omar Alaswad, Ahlal H Montaser, and Fawzia Elhashmi Mohamad.
2014. Vulnerabilities of biometric authentication threats and countermeasures.
International Journal of Information & Computation Technology 4, 10 (2014), 947–
58.

[6] Mashari Alatawi and Nitesh Saxena. 2023. SoK: An Analysis of End-to-End
Encryption and Authentication Ceremonies in Secure Messaging Systems. In
Proceedings of the 16th ACM Conference on Security and Privacy in Wireless and
Mobile Networks. 187–201.

[7] Ohoud Albogami, Manal Alruqi, Kholood Almalki, and Asia Aljahdali. 2021.
Public key infrastructure traditional and modern implementation. International
Journal of Network Security 23, 2 (2021), 343–350.

[8] Kirill Arbuzov. 2023. Advanced spyware for mobile devices. (2023).
[9] Alireza Bahramali, Ramin Soltani, Amir Houmansadr, Dennis Goeckel, and Don

Towsley. 2020. Practical traffic analysis attacks on secure messaging applications.
arXiv preprint arXiv:2005.00508 (2020).

[10] Corina-Elena Bogos, Răzvan Mocanu, and Emil Simion. 2023. A security analysis
comparison between Signal, WhatsApp and Telegram. Cryptology ePrint Archive
(2023).

[11] Emmanuel Bresson, Olivier Chevassut, and David Pointcheval. 2007. Provably
secure authenticated group Diffie-Hellman key exchange. ACM Transactions on
Information and System Security (TISSEC) 10, 3 (2007), 10–es.

[12] Sébastien Campion, Julien Devigne, Céline Duguey, and Pierre-Alain Fouque.
2020. Multi-device for signal. In Applied Cryptography and Network Security: 18th
International Conference, ACNS 2020, Rome, Italy, October 19–22, 2020, Proceedings,
Part II 18. Springer, 167–187.

[13] Tom Carpay and Pavlos Lontorfos. 2019. WhatsApp End-to-End Encryption: Are
Our Messages Private? Retrieved 2, 05 (2019), 2020.

[14] Facebook. 2024. Document from Facebook. https://www.whatsapp.com/security/
WhatsApp-Security-Whitepaper.pdf Accessed: 2024-05-26.

[15] Oluwatoyin Ajoke Farayola, Oluwabukunmi Latifat Olorunfemi, and
Philip Olaseni Shoetan. 2024. Data privacy and security in IT: a review of
techniques and challenges. Computer Science & IT Research Journal 5, 3 (2024),
606–615.

[16] Sébastien Hauri. 2022. SAS-based authentication for secure messaging. (2022).
[17] Amir Herzberg and Hemi Leibowitz. 2016. Can Johnny finally encrypt? Evaluat-

ing E2E-encryption in popular IM applications. In Proceedings of the 6th Workshop
on Socio-Technical Aspects in Security and Trust. 17–28.

[18] Neal Hindocha and Eric Chien. 2003. Malicious threats and vulnerabilities in
instant messaging. In Virus Bulletin Conference, vb2003.

[19] Johannes Hönlinger. 2018. The role of instant messenger as computermediated
communication tool for knowledge sharing and teamwork performance.

[20] Takanori Isobe and Kazuhiko Minematsu. 2018. Breaking message integrity of
an end-to-end encryption scheme of LINE. In Computer Security: 23rd European
Symposium on Research in Computer Security, ESORICS 2018, Barcelona, Spain,
September 3-7, 2018, Proceedings, Part II 23. Springer, 249–268.

[21] Kartikeya Jain, Anagha Ananth, and Prasad Honnavalli. 2021. Vulnerability
Analysis of a Signal-based Messenger. In 2021 IEEE Bombay Section Signature
Conference (IBSSC). IEEE, 1–6.

[22] Kehinde Funmilayo Mefolere. 2016. WhatsApp and information sharing: Prospect
and challenges. International Journal of Social Science and Humanities Research 4,
1 (2016), 615–625.

[23] Leah Moyle, Andrew Childs, Ross Coomber, and Monica J Barratt. 2019. #
Drugsforsale: An exploration of the use of social media and encrypted messaging
apps to supply and access drugs. International Journal of Drug Policy 63 (2019),
101–110.

[24] Sunetra Sen Narayan and Shalini Narayanan. 2024. The WhatsApp India Story:
Inside the Digital Maya Sphere. Taylor & Francis.

[25] Rolf Oppliger. 2020. End-to-end Encrypted Messaging. Artech House.
[26] Jim Owens and Jeanna Matthews. 2008. A study of passwords and methods

used in brute-force SSH attacks. In USENIX Workshop on Large-Scale Exploits and
Emergent Threats (LEET). 8.

[27] Riccardo Pecori and Luca Veltri. 2016. 3AKEP: Triple-authenticated key exchange
protocol for peer-to-peer VoIP applications. Computer Communications 85 (2016),
28–40.

[28] Nidhi Rastogi and James Hendler. 2017. WhatsApp security and role of metadata
in preserving privacy. arXiv Prepr. arXiv1701 6817 (2017), 269–275.

[29] Gabriel Arquelau Pimenta Rodrigues, Robson De Oliveira Albuquerque, Gabriel
De Oliveira Alves, Fábio Lúcio Lopes De Mendonça, William Ferreira Giozza,
Rafael Timóteo De Sousa, and Ana Lucila Sandoval Orozco. 2020. Securing instant
messages with hardware-based cryptography and authentication in browser
extension. IEEE Access 8 (2020), 95137–95152.

[30] Manushree Sahay, Sandeep Vanjale, andMadhaviMane. 2024. Software As Service
Attack Detection and Prevention for Deceitful QR code. International Journal of
Intelligent Systems and Applications in Engineering 12, 4s (2024), 454–462.

[31] Shivangi Singh. 2024. PEGASUS SPYWARE AND RIGHT TO PRIVACY IN INDIA.
(2024).

[32] Thomas Strasser. 2020. App, app’n’away. How social messaging tools like What-
sApp support mobile language learning and teaching. heiEDUCATION Journal.
Transdisziplinäre Studien zur Lehrerbildung 5 (2020).

[33] Belén Suárez-Lantarón, Yolanda Deocano-Ruíz, Nuria García-Perales, and
Irina Sherezade Castillo-Reche. 2022. The educational use of WhatsApp. Sustain-
ability 14, 17 (2022), 10510.

[34] Telegram. 2024. Telegram QR Login. https://core.telegram.org/api/qr-login
Accessed: 2024-05-26.

[35] V Thangavel. 2024. Nomophobia in India: A psychological disorder that causes
the brain to release dopamine in response to tweets, emoticons, and other acts,
rewarding the behavior and sustaining the habit of using social media addiction.
Curr Trends Mass Comm 3, 1 (2024), 01–16.

[36] Amin Tootoonchian, Stefan Saroiu, Yashar Ganjali, and Alec Wolman. 2009.
Lockr: better privacy for social networks. In Proceedings of the 5th international
conference on Emerging networking experiments and technologies. 169–180.

[37] Serge Vaudenay. 2005. Secure communications over insecure channels based
on short authenticated strings. In Annual International Cryptology Conference.
Springer, 309–326.

[38] Heider AM Wahsheh and Mohammed S Al-Zahrani. 2021. Secure real-time
computational intelligence system against malicious QR code links. International
Journal of Computers Communications & Control 16, 3 (2021).

[39] WeChat Developers. 2024. Login via Scan. https://developers.weixin.qq.com/
doc/oplatform/en/Mobile_App/WeChat_Login/Login_via_Scan.html Accessed:
2024-05-26.

[40] Jan Wichelmann, Sebastian Berndt, Claudius Pott, and Thomas Eisenbarth.
2021. Help, My Signal has Bad Device! Breaking the Signal Messenger’s Post-
Compromise Security Through a Malicious Device. In Detection of Intrusions and
Malware, and Vulnerability Assessment: 18th International Conference, DIMVA
2021, Virtual Event, July 14–16, 2021, Proceedings 18. Springer, 88–105.

[41] Fietyata Yudha, Ahmad Luthfi, and Yudi Prayudi. 2017. A proposed model for
investigating on webWhatsApp application. Advanced Science Letters 23, 5 (2017),
4050–4054.

A Algorithms for SAS-Based Device Linking
and SAS Computation

We developed two algorithms to describe the procedures for the
above mechanism. The SAS-Based Device Linking Algorithm 1
ensures secure pairing between a Secondary Device (SD) and a
Primary Device (PD) using Diffie-Hellman key exchange and com-
mitment schemes. The devices exchange commitments and ran-
dom values, compute a shared key, and verify a Short Authenti-
cation String (SAS) to complete the secure linking process. Our
approach comprehensively provides a better verification step than
comparison-based manual verification of SAS, as we provide two
ways of confirmation and verification.

Algorithm 2 computes SAS by processing a shared secret and
two random values. It ensures a unique, verifiable string for secure
device pairing. The algorithm employs bitwise XOR operations

11

https://www.whatsapp.com/security/WhatsApp-Security-Whitepaper.pdf
https://www.whatsapp.com/security/WhatsApp-Security-Whitepaper.pdf
https://core.telegram.org/api/qr-login
https://developers.weixin.qq.com/doc/oplatform/en/Mobile_App/WeChat_Login/Login_via_Scan.html
https://developers.weixin.qq.com/doc/oplatform/en/Mobile_App/WeChat_Login/Login_via_Scan.html


on integer representations of the inputs and returns the result in
hexadecimal format.

Algorithm 1 SAS-Based Device Linking Algorithm

1: SD: Generate DH pair (𝑑𝑆𝐷 , 𝑔𝑑𝑆𝐷 ) and random 𝑅𝑆𝐷

2: Compute 𝐶𝑆𝐷 = commit(𝑅𝑆𝐷 , 𝑔𝑑𝑆𝐷 )
3: Send 𝐶𝑆𝐷 and 𝑔𝑑𝑆𝐷 to Server
4: Server: Forward 𝐶𝑆𝐷 and 𝑔𝑑𝑆𝐷 to PD
5: PD: Generate DH pair (𝑑𝑃𝐷 , 𝑔𝑑𝑃𝐷 ) and random 𝑅𝑃𝐷

6: Compute 𝐶𝑃𝐷 = commit(𝑅𝑃𝐷 , 𝑔𝑑𝑃𝐷 )
7: Send 𝐶𝑃𝐷 and 𝑔𝑑𝑃𝐷 to Server
8: Server: Forward 𝐶𝑃𝐷 and 𝑔𝑑𝑃𝐷 to SD
9: PD and SD: Exchange 𝑅𝑃𝐷 and 𝑅𝑆𝐷 via Server
10: PD: Verify 𝐶𝑆𝐷 ; SD: Verify 𝐶𝑃𝐷
11: PD: Compute 𝐾𝑃𝐷 = (𝑔𝑑𝑆𝐷 )𝑑𝑃𝐷
12: SD: Compute 𝐾𝑆𝐷 = (𝑔𝑑𝑃𝐷 )𝑑𝑆𝐷
13: Both: Compute 𝑆𝐴𝑆 = compute_sas(𝐾𝑃𝐷 , 𝑅𝑃𝐷 , 𝑅𝑆𝐷 )
14: SD: Display 𝑆𝐴𝑆 in one of two ways:
15: Option 1: Display 𝑆𝐴𝑆 as a QR Code
16: PD: Scan and decode the QR Code to obtain 𝑆𝐴𝑆
17: Option 2: Display 𝑆𝐴𝑆 as a string
18: PD User:Manually enter the displayed 𝑆𝐴𝑆 on the PD
19: PD: Verify 𝑆𝐴𝑆
20: if 𝑆𝐴𝑆 matches then
21: Send confirmation to SD
22: SD User: Accept or reject the confirmation
23: if confirmation accepted then
24: Linking Device Mechanism Completed
25: else
26: Linking Device Mechanism Failed
27: end if
28: else
29: Linking Device Mechanism Failed
30: end if

Algorithm 2 Compute Short Authentication String (SAS)
Require: 𝑠ℎ𝑎𝑟𝑒𝑑_𝑠𝑒𝑐𝑟𝑒𝑡 , 𝑟𝑎𝑛𝑑𝑜𝑚_𝑣𝑎𝑙𝑢𝑒_𝐴, 𝑟𝑎𝑛𝑑𝑜𝑚_𝑣𝑎𝑙𝑢𝑒_𝐵
Ensure: Short Authentication String (SAS)
1: 𝑠𝑎𝑠_𝑖𝑛𝑡 ← 𝑖𝑛𝑡_𝑓 𝑟𝑜𝑚_𝑏𝑦𝑡𝑒𝑠 (𝑠ℎ𝑎𝑟𝑒𝑑_𝑠𝑒𝑐𝑟𝑒𝑡 [: 16],′ 𝑏𝑖𝑔′)
2: 𝑠𝑎𝑠_𝑖𝑛𝑡 ← 𝑠𝑎𝑠_𝑖𝑛𝑡 ⊕ 𝑖𝑛𝑡_𝑓 𝑟𝑜𝑚_𝑏𝑦𝑡𝑒𝑠 (𝑟𝑎𝑛𝑑𝑜𝑚_𝑣𝑎𝑙𝑢𝑒_𝐴,′ 𝑏𝑖𝑔′)
3: 𝑠𝑎𝑠_𝑖𝑛𝑡 ← 𝑠𝑎𝑠_𝑖𝑛𝑡 ⊕ 𝑖𝑛𝑡_𝑓 𝑟𝑜𝑚_𝑏𝑦𝑡𝑒𝑠 (𝑟𝑎𝑛𝑑𝑜𝑚_𝑣𝑎𝑙𝑢𝑒_𝐵,′ 𝑏𝑖𝑔′)
4: return ℎ𝑒𝑥 (𝑠𝑎𝑠_𝑖𝑛𝑡) [2 :]

B Implementation Details
The implementation details are illustrated in Figure 12, provided
in Appendix 12. This figure demonstrates how, in a typical E2EE
messaging app’s device linking mechanism, an attacker attempting
to intercept the QR code and extract the SAS will fail to gain access
to the user’s WhatsApp account.

User installed Desktop 
WhatsApp App

Attacker placed the camera and 
scanned the QR Code or Enter the 

SAS
Accept or Reject Confirmation on 

User’s Device

User Rejects Once 
getting the unwanted 

confirmation

Figure 12: SASLinker Implementation on E2EE Messaging
Apps

12


	Abstract
	1 Introduction
	2 Background
	2.1 Current Linking Device and Syncing Protocols for E2EE messaging apps
	2.2 Review of SAS Authentication Protocols

	3 QRSniffer Attack Scenarios
	3.1 QRSniffer-Browser
	3.2 QRSniffer-Prox

	4 SASLinker: Our Proposed Defense
	4.1 Overview
	4.2 Detailed Explanation of How SASLinker Addresses Specific Vulnerabilities
	4.3 Authentication Methods Comparison

	5 SASLinker: Design and Implementation
	5.1 System Architecture
	5.2 Implementation Detail

	6 Discussion
	7 Related Work
	8 Conclusion
	References
	A Algorithms for SAS-Based Device Linking and SAS Computation
	B Implementation Details

