• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • Home
  • Research
  • Publications
  • People
  • Teaching
  • Media Outreach
  • News
  • AI Spies News

SPIES Lab, Computer Science and Engineering

Texas A&M University College of Engineering

YELP

Masking Sound-based Opportunistic Attacks in Zero-Effort Deauthentication

Deauthentication is an important component of any computing system that promises to offer legitimate access to restricted services residing on the system. As computing devices are ubiquitous, it has underscored the need to design zero-effort deauthentication systems from a usability perspective. While the design of such deauthentication systems is geared towards making them more usable, often the security implication of these deigns overlook the physical security of the system resulting in various side channel vulnerabilities in the system. This issue highlights the need to design a defense mechanism that is capable of minimizing the threat posed by such side channel attacks while having minimal impact on the design of the system.

Figure 1: An audio-only opportunistic eavesdropping attack on a zero-effort deauthentication system (e.g. ZEBRA)

Figure 1: An audio-only opportunistic eavesdropping attack on a zero-effort deauthentication system (e.g. ZEBRA)


We aim to address the sound-based vulnerability of one of the prominent zero-effort deauthentication schemes, called ZEBRA that transparently and continuously authenticates the user using a wearable device wirelessly connected with the authentication terminal. To this end, we designed YELP, a novel and practical defense mechanism based on the principle of sound masking. YELP uses two different types of masking sounds, namely “white noise”, and “music” for cloaking the acoustic side channel leakage underlying the ZEBRA system. We believe that the use of such masking sounds at a reasonable volume level can hide the acoustic leakage emanating from the physical component of the system, and thereby reduce, if not eliminate, the imposed sound-based vulnerability. Indeed, our results show that white noise, as a masking sound, can effectively hide the acoustic leakage from ZEBRA system, thereby significantly reducing the attack success rate of an audio-based side channel attacker while music can moderately hide the acoustic leakage from the system. Our work therefore shows that sound masking can be used as an effective tool in improving the security of (de)authentication systems against an audio-based side channel attack without affecting its original design and without requiring additional effort from the user.

Figure 2: YELP (a sound masking based defense) using a masking signal to thwart an audio only opportunistic eavesdropping attack.

Figure 2: YELP (a sound masking based defense) using a masking signal to thwart an audio only opportunistic eavesdropping attack.

People

Faculty

  • Nitesh Saxena

Student

  • Prakash Shrestha (PhD student)
  • S Abhishek Anand (PhD candidate)

Publication

  • YELP: Masking Sound-based Opportunistic Attacks in Zero-Effort Deauthentication.
    Prakash Shrestha, S Abhishek Anand and Nitesh Saxena.
    In 10th ACM Conference on Security and Privacy in Wireless and Mobile Networks (WiSec), 2017.
    [pdf]

Recent News

  • Paper accepted to ACM CCS 2025 July 2, 2025
  • News: Security and Accessibility Gaps in Web Authentication for Blind and Visually Impaired Users June 30, 2025
  • Paper accepted to ICME 2025 June 24, 2025
  • SPIES Lab’s Browser Fingerprinting Work in the News June 23, 2025
  • Journal paper accepted to IEEE TIFS June 19, 2025
  • SPIES Lab’s Browser Fingerprinting Work Features in News June 18, 2025
  • Paper Accepted to USENIX Security 2025 June 6, 2025
  • 2 Papers Accepted to PST 2025 June 6, 2025
  • AI Spies News — BPSniff (IEEE S&P 2025) Paper News Story May 12, 2025
  • Launching the AI Spies News Channel May 12, 2025
  • Paper accepted to WiSec 2025 May 11, 2025
  • SPIES Lab’s Secure Messaging Work Features in News May 3, 2025
  • SPIES Lab Student to Start as an Assistant Professor April 18, 2025
  • Dr. Saxena’s Primer on Secure Communications in News Media March 31, 2025
  • Dr. Saxena recognized with the Dean’s Excellence Award! February 14, 2025
  • Dr. Saxena appointed as the Senior Area Editor, IEEE TIFS February 6, 2025
  • 2 Full Papers Accepted to WWW 2025 January 20, 2025
  • Journal paper accepted to IEEE TMC December 18, 2024
  • New post-doctoral researcher joins the lab December 11, 2024
  • Paper Accepted to ACM Computing Surveys 2024 November 30, 2024

© 2016–2025 SPIES Lab, Computer Science and Engineering Log in

Texas A&M Engineering Experiment Station Logo
  • College of Engineering
  • Facebook
  • Twitter
  • State of Texas
  • Open Records
  • Risk, Fraud & Misconduct Hotline
  • Statewide Search
  • Site Links & Policies
  • Accommodations
  • Environmental Health, Safety & Security
  • Employment